Technical Library | 2024-02-26 09:08:23.0
Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.
Technical Library | 2008-08-28 22:50:11.0
The increasing use of lead-free solder has introduced a new set of process parameters when setting up wave solder equipment for effective soldering. Determining the proper flow characteristics of the solder wave for adequate hole fill is an essential step in achieving a reliable process. A variety of solder waves exist in the industry; each with advantages and disadvantages when performing lead-free wave soldering. One way to ensure adequate hole-fill is by increasing contact time at the Chip Wave.
Technical Library | 2013-01-24 19:16:35.0
The electronics industry has mainly adopted the higher melting point Sn3Ag0.5Cu solder alloys for lead-free reflow soldering applications. For applications where temperature sensitive components and boards are used this has created a need to develop low melting point lead-free alloy solder pastes. Tin-bismuth and tin-bismuth-silver containing alloys were used to address the temperature issue with development done on Sn58Bi, Sn57.6Bi0.4Ag, Sn57Bi1Ag lead-free solder alloy pastes. Investigations included paste printing studies, reflow and wetting analysis on different substrates and board surface finishes and head-in-pillow paste performance in addition to paste-in-hole reflow tests. Voiding was also investigated on tin-bismuth and tin-bismuth-silver versus Sn3Ag0.5Cu soldered QFN/MLF/BTC components. Mechanical bond strength testing was also done comparing Sn58Bi, Sn37Pb and Sn3Ag0.5Cu soldered components. The results of the work are reported.
Technical Library | 2007-05-02 15:00:17.0
This brief study of lead-free wave soldering focuses upon copper dissolution and solder maintenance issues. Unfortunately, it is determined that waste and changeover costs can dramatically increase with lead-free wave soldering.
Technical Library | 2019-01-09 19:19:52.0
The electronics industry has widely adopted Sn-3.0Ag-0.5Cu solder alloys for lead-free reflow soldering applications and tin-copper based alloys for wave soldering applications. In automated soldering or rework operations, users may work with Sn-Ag-Cu or Sn-Cu based alloys. One of the challenges with these types of lead-free alloys for automated / hand soldering operations, is that the life of the soldering iron tips will shorten drastically using lead-free solders with an increased cost of soldering iron tool maintenance/ tip replacement. Development was done on a new lead-free low silver solder rework alloy (Sn-0.3Ag-0.7Cu-0.04Co) in comparison with a number of alternative lead-free alloys including Sn-0.3Ag-0.7Cu, Sn-0.7Cu and Sn-3.0Ag-0.5Cu and tin-lead Sn40Pb solder in soldering evaluations.
Technical Library | 2008-01-24 16:19:43.0
The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.
Technical Library | 2021-11-03 16:49:59.0
Ultrathin bare die chips were soldered using a novel soldering technology. Using homogeneous flash light generated by high-power xenon flash lamp the dummy components and the bare die NFC chips were successfully soldered to copper tracks on polyimide (PI) and polyethylene terephthalate (PET) flex foils by using industry standard Sn-Ag-Cu lead free alloys. Due to the selectivity of light absorption, a limited temperature increase was observed in the PET substrates while the chip and copper tracks were rapidly heated to a temperatures above the solder melting temperature. This allowed to successfully soldered components onto the delicate polyethylene foil substrates using lead-free alloys with liquidus temperatures above 200 °C. It was shown that by preheating components above the decomposition temperature of solder paste flux with a set of short low intensity pulses the processing window could be significantly extended compared to the process with direct illumination of chips with high intensity flash pulse. Furthermore, it was demonstrated that with localized tuning of pulse intensity components having different heat capacity could be simultaneously soldered using a single flash pulse.
Technical Library | 2008-02-12 22:52:41.0
Corrosion of solder pots and solder pot components in wave soldering equipment has been reduced with the introduction of corrosion resistant coatings and improved lead free solder alloys. The latest trends in protecting wave solder machine components from liquid metal corrosion by lead free solder alloys will be presented in order to provide guidelines for evaluating existing equipment as well as for purchasing new systems.
Technical Library | 2008-01-10 19:24:48.0
This research takes an in-depth look at the challenges encountered in developing a lead free wave soldering process based on the specific products as well as on specific materials. It attempts to provide the reader with the information necessary to make educated decisions in selecting materials and controlling various process parameters in order to execute a rational implementation strategy for a reliable and robust lead free wave soldering process.
Technical Library | 2015-10-29 18:19:33.0
With the electronic industry moving towards lead-free assembly, traditional SnPb-compatible laminates need to be replaced with lead-free compatible laminates that can withstand the higher reflow temperature required by lead-free solders. Lead-free compatible laminates with improved heat resistance have been developed to meet this challenge but they are typically more brittle than SnPb laminates causing some to be more susceptible to pad cratering. In this paper, two novel approaches for minimizing pad cratering will be discussed. Preliminary results which validate the two approaches will also be presented.