Technical Library: white* (Page 2 of 3)

How to optimize dispensing processes

Technical Library | 2022-08-02 17:45:58.0

Effective and reliable dispensing is based primarily on process technology that has been perfectly set up for the specific project. Anyone tasked with planning dispensing systems and responsible for the processes should know the principles and key factors involved so that the dispensing processes can be successfully implemented in cooperation with system and material partners. This White Paper explains the relevant aspects of process technology and provides valuable practical tips.

Scheugenpflug Inc.

Potting-optimized component design

Technical Library | 2023-02-15 16:00:16.0

With regard to potting, the design of electronic assemblies and components has a significant impact on economical and sustainable production. Key aspects in this respect are pottability, material use, cycle times, quality and the process technology needed. Optimized, bubble-free potting contributes greatly to the function and longevity of products. It is best practice during the design and development phases therefore to follow the potting tips contained in this White Paper.

Scheugenpflug Inc.

How to optimize dispensing processes

Technical Library | 2024-03-20 13:37:18.0

Effective and reliable dispensing is based primarily on process technology that has been perfectly set up for the specific project. Anyone tasked with planning dispensing systems and responsible for the processes should know the principles and key factors involved so that the dispensing processes can be successfully implemented in cooperation with system and material partners. This White Paper explains the relevant aspects of process technology and provides valuable practical tips.

Scheugenpflug Inc.

System Level ESD Part II: Implementation of Effective ESD Robust Designs

Technical Library | 2013-06-27 14:00:27.0

While IC level ESD design and the necessary protection levels are well understood, system ESD protection strategy and design efficiency have only been dealt with in an ad hoc manner. This is most obvious when we realize that a consolidated approach to system level ESD design between system manufacturers and chip suppliers has been rare. This White Paper discusses these issues in the open for the first time, and offers new and relevant insight for the development of efficient system level ESD design.

Industry Council on ESD Target Levels

Thermal Capabilities of Solder Masks and Other Coating Materials - How High Can We Go?

Technical Library | 2019-09-24 15:41:53.0

This paper focuses on three different coating material groups which were formulated to operate under high thermal stress and are applied at printed circuit board manufacturing level. While used for principally different applications, these coatings have in common that they can be key to a successful thermal management concept especially in e-mobility and lighting applications. The coatings consist of: Specialty (green transparent) liquid photoimageable solder masks (LPiSM) compatible with long-term thermal storage/stress in excess of 150°C. Combined with the appropriate high-temperature base material, and along with a suitable copper pre-treatment, these solder resists are capable of fulfilling higher thermal demands. In this context, long-term storage tests as well as temperature cycling tests were conducted. Moreover, the effect of various Cu pre-treatment methods on the adhesion of the solder masks was examined following 150, 175 and 200°C ageing processes. For this purpose, test panels were conditioned for 2000 hours at the respective temperatures and were submitted to a cross-cut test every 500 h. Within this test set-up, it was found that a multi-level chemical pre-treatment gives significantly better adhesion results, in particular at 175°C and 200°C, compared with a pre-treatment by brush or pumice brush. Also, breakdown voltage as well as tracking resistance were investigated. For an application in LED technology, the light reflectivity and white colour stability of the printed circuit board are of major importance, especially when high-power LEDs are used which can generate larger amounts of heat. For this reason, a very high coverage power and an intense white colour with high reflectivity values are essential for white solder masks. These "ultra-white" and largely non-yellowing LPiSM need to be able to withstand specific thermal loads, especially in combination with high-power LED lighting applications. The topic of thermal performance of coatings for electronics will also be discussed in view of printed heatsink paste (HSP) and thermal interface paste (TIP) coatings which are used for a growing number of applications. They are processed at the printed circuit board manufacturing level for thermal-coupling and heat-spreading purposes in various thermal management-sensitive fields, especially in the automotive and LED lighting industries. Besides giving an overview of the principle functionality, it will be discussed what makes these ceramic-filled epoxy- or silicone-based materials special compared to using "thermal greases" and "thermal pads" for heat dissipation purposes.

Lackwerke Peters GmbH + Co KG

Dispensing Thermally Conductive Materials

Technical Library | 2022-09-29 14:08:42.0

Electronic vehicles, devices and components must not overheat, otherwise they may fail to operate correctly. Thermal management is a major technical challenge as components are getting smaller, power densities are increasing and demands on robustness and reliability are becoming more stringent. To prevent power losses or defects resulting from overheating, liquid thermal interface materials (TIMs) are being increasingly used to dissipate their heat. This White Paper discusses the aspects that need to be taken into account when dispensing these mostly highly viscous, highly abrasive materials and why in many cases they are better alternatives to pads, tapes and foils.

Scheugenpflug Inc.

Analog FastSPICE Platform Full-Circuit PLL Verification

Technical Library | 2016-06-30 14:00:32.0

When designing PLLs in nanometer CMOS, it is essential to validate the closed-loop PLL performance metrics with nanometer SPICE accuracy before going to silicon. Transistor-level, closed-loop PLL verification has been impractical due to traditional SPICE and RF simulator performance and capacity limitations. By using Analog FastSPICE, designers dont have to trade accuracy for performance. Read this white paper to see how AFS: Delivers closed-loop PLL transistor-level verification Supports direct jitter measurements Produces phase noise results correlating within 1-2dB of silicon

Mentor Graphics

Tau White Paper

Technical Library | 2001-04-24 10:47:02.0

Board-level circuits today routinely run at speeds of 100 MHz or more and are composed of dozens of complex interacting VLSI components. To design such circuits in a timely and correct manner it is necessary to pay close attention to circuit timing early in the design cycle. At fast clock speeds, managing component and interconnect propagation delay becomes a key aspect of circuit design. It is imperative that the critical paths on a circuit and the slack available for interconnect delay consumption be identified early, and drive subsequent stages in the design flow.

Mentor Graphics

A Room Temperature Stable and Jetable Solder Joint Encapsulant Adhesive - Capillary Underfill Replacement

Technical Library | 2016-01-12 11:07:56.0

With the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, YINCAE has published a white paper on a first individual solder joint encapsulant which can eliminate underfilling process with at least five times solder joint increase and provide more flexibility for fine pitch and high density application. In order to meet the demand of manufacturing of high speed and low cost, YINCAE has invented a room temperature stable and jettable solder joint encapsulant adhesive – SMT 266. The invention of SMT 266 has allowed our customers to have more flexibility in their high-speed production line such as worry free on the work life of adhesive and workable jetting process.

YINCAE Advanced Materials, LLC.

QUANTIFYING THE IMPROVEMENTS IN THE SOLDER PASTE PRINTING PROCESS FROM STENCIL NANOCOATINGS AND ENGINEERED UNDER WIPE SOLVENTS

Technical Library | 2023-05-22 17:46:29.0

Over the past several years, much research has been performed and published on the benefits of stencil nano-coatings and solvent under wipes. The process improvements are evident and well-documented in terms of higher print and end-of-line yields, in improved print volume repeatability, in extended under wipe intervals, and in photographs of the stencil's PCB-seating surface under both white and UV light. But quantifying the benefits using automated Solder Paste Inspection (SPI) methods has been elusive at best. SPI results using these process enhancements typically reveal slightly lower paste transfer efficiencies and less variation in print volumes to indicate crisper print definition. However, the improvements in volume data do not fully account for the overall improvements noted elsewhere in both research and in production.

KYZEN Corporation


white* searches for Companies, Equipment, Machines, Suppliers & Information

One stop service for all SMT and PCB needs

Training online, at your facility, or at one of our worldwide training centers"
Sell Your Used SMT & Test Equipment

High Resolution Fast Speed Industrial Cameras.
SMT feeders

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
2024 Eptac IPC Certification Training Schedule

Software for SMT placement & AOI - Free Download.
Professional technical team,good service, ready to ship- Various brands pick and place machine!

Thermal Transfer Materials.