Technical Library: ceramics packages (Page 1 of 1)

Organic Flip Chip Packages for Use in Military and Aerospace Applications

Technical Library | 2006-11-14 12:48:31.0

Content: 1. Bridge from Commercial Reliability 2. Existing PBGA use in Aerospace & Military 3. Drivers: Plastic versus Ceramic Package Weight 4. Attributes of PTFE and Thin Core FC Packages 5. Flip Chip Package Reliability 6. Flip Chip Package

i3 Electronics

Nondestructive Inspection of Underfill Layers Stacked up in Ceramics-Organics-Ceramics Packages with Scanning Acoustic Tomography (SAT)

Technical Library | 2017-06-15 00:44:19.0

Ceramics packages are being used in the electronics industry to operate the devices in harsh environments. In this paper we report a study on acoustic imaging technology for nondestructively inspecting underfill layers connecting organic interposers sandwiched between two ceramics substrates.First, we inspected the samples with transmission mode of scanning acoustic tomography (SAT) system, an inspection routine usually employed in assembly lines because of its simpler interpretation criteria: flawed region blocks the acoustic wave and appears darker. In this multilayer sample, this approach does not offer the crucial information at which layer of underfill has flaws. To resolve this issue, we use C-Mode Scanning in reflection mode to image layer by layer utilizing ultrasound frequencies from 15MHz to 120MHz. Although the sample is thick and contains at least 5 internal material interfaces, we are able to identify defective underfill layer interfaces.

Flex (Flextronics International)

Ceramic to Plastic Packaging

Technical Library | 2010-04-15 22:06:32.0

As electronic products increase in functionality and complexity, there is an emphasis on affordability, miniaturization, and energy efficiency. The telecommunications, automotive, and commercial electronic markets are the leading drivers for these trends. These markets see high volume manufacturing with millions of units priced to the fraction of the cent. The choice of the packaging material for the electrical components for these markets can have a substantial effect on the cost of the final product. Therefore plastic encapsulated components are almost universally used in non-military applications over the conventional ceramic or metal electronic packages.

Electronics Manufacturing Productivity Facility (EMPF)

Advanced Organic Substrate Technologies To Enable Extreme Electronics Miniaturization.

Technical Library | 2014-08-14 17:58:41.0

High reliability applications for high performance computing, military, medical and industrial applications are driving electronics packaging advancements toward increased functionality with decreasing degrees of size, weight and power (SWaP) The substrate technology selected for the electronics package is a key enabling technology towards achieving SWaP. Standard printed circuit boards (PWBs) utilize dielectric materials containing glass cloth, which can limit circuit density and performance, as well as inhibit the ability to achieve reliable assemblies with bare semiconductor die components. Ceramic substrates often used in lieu of PWBs for chip packaging have disadvantages of weight, marginal electrical performance and reliability as compared to organic technologies. Alternative materials including thin, particle-containing organic substrates, liquid crystal polymer (LCP) and microflex enable SWaP, while overcoming the limitations of PWBs and ceramic. This paper will discuss the use of these alternative organic substrate materials to achieve extreme electronics miniaturization with outstanding electrical performance and high reliability. The effect of substrate type on chip-package interaction and resulting reliability will be discussed. Microflex assemblies to achieve extreme miniaturization and atypical form factors driven by implantable and in vivo medical applications are also shown.

i3 Electronics

Design Parameters Influening Reliability of CCGA Assembly; a Sensitivity Analysis

Technical Library | 2019-07-30 15:29:50.0

Area Array microelectronic packages with small pitch and large I/O counts are now widely used in microelectronics packaging. The impact of various package design and materials/process parameters on reliability has been studied through extensive literature review. Reliability of Ceramic Column Grid Array (CCGA) package assemblies has been evaluated using JPL thermal cycle test results (-50°/75°C, -55°/100°C, and -55°/125°C), as well as those reported by other investigators. A sensitivity analysis has been performed using the literature data to study the impact of design parameters and global/local stress conditions on assembly reliability. The applicability of various life-prediction models for CCGA design has been investigated by comparing model's predictions with the experimental thermal cycling data. Finite Element Method (FEM) analysis has been conducted to assess the state of the stress/strain in CCGA assembly under different thermal cycling, and to explain the different failure modes and locations observed in JPL test assemblies.

Jet Propulsion Laboratory

High Temperature Ceramic Capacitors for Deep Well Applications

Technical Library | 2015-01-22 17:32:27.0

Temperature requirements for ceramic capacitors have increased significantly with recent advances in deep-well drilling technology. Increasing demand for oil and natural gas has driven the technology to deeper and deeper deposits resulting in extreme temperature environments up to 200°C and above. A novel capacitor solution utilizing temperature-stable base-metal electrode capacitors in a molded and leaded package addresses the growing market high temperature demands of (1) capacitance stability, (2) long service life, and (3) mechanical durability. A range of high temperature C0G capacitors capable of meeting this 200°C and above high temperature environment has been developed. This paper will review the electrical, reliability, and mechanical performance of this new capacitor solution

KEMET Electronics Corporation

Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints

Technical Library | 2014-06-19 18:13:23.0

For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...

National Chiao Tung University

Stencil Print solutions for Advance Packaging Applications

Technical Library | 2023-07-25 16:25:56.0

This paper address two significant applications of stencils in advance packaging field: 1. Ultra-Thin stencils for miniature component (0201m) assembly; 2. Deep Cavity stencils for embedded (open cavity) packaging. As the world of electronics continues to evolve with focus on smaller, lighter, faster, and feature-enhanced high- performing electronic products, so are the requirement for complex stencils to assemble such components. These stencil thicknesses start from less than 25um with apertures as small as 60um (or less). Step stencils are used when varying stencil thicknesses are required to print into cavities or on elevated surfaces or to provide relief for certain features on a board. In the early days of SMT assembly, step stencils were used to reduce the stencil thickness for 25 mil pitch leaded device apertures. Thick metal stencils that have both relief-etch pockets and reservoir step pockets are very useful for paste reservoir printing. Electroform Step-Up Stencils for ceramic BGA's and RF Shields are a good solution to achieve additional solder paste height on the pads of these components as well as providing exceptional paste transfer for smaller components like uBGAs and 0201s. As the components are getting smaller, for example 0201m, or as the available real estate for component placement on a board is getting smaller – finer is the aperture size and the pitch on the stencils. Aggressive distances from step wall to aperture are also required. Ultra-thin stencils with thicknesses in the order of 15um-40um with steps of 15um are used to obtain desired print volumes. Stencils with thickness to this order can be potential tools even to print for RDLs in the package.

Photo Stencil LLC

  1  

ceramics packages searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

World's Best Reflow Oven Customizable for Unique Applications
fluid dispenser

We offer SMT Nozzles, feeders and spare parts globally. Find out more
Circuit Board, PCB Assembly & electronics manufacturing service provider

High Precision Fluid Dispensers
PCB Handling with CE

Software for SMT placement & AOI - Free Download.
Voidless Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.