Technical Library: cleaning methods (Page 1 of 3)

BGA Reballing

Technical Library | 2019-05-30 10:59:13.0

In the current economic environment, the ability to reuse ball grid array(BGA) components that have failed due to solder defects may be an efficient way for electronics manufacturers to reduce costs. Cost may not be the only driving factor in the decision to engage in this recycling practice. The increasing demands placed upon the complexity of microprocessors and integrated circuits (ICs) has decreased the availability of some components, and increased their lead time. Because of this, reballing may provide a means to meet schedule, reduce rework turn-around time, and give a manufacturer a decisive advantage over other companies in an ever increasingly competitive market. This article will discuss the process of reballing BGA components (Figure 1), examining preparation (the preform method, the screen method), and cleaning and bake-out.

ACI Technologies, Inc.

Online PCBA Cleaning Machine: Efficient and Effective Cleaning for Your PCBs

Technical Library | 2023-09-13 12:46:41.0

Online PCBA cleaning machines are a great way to improve the quality and reliability of your printed circuit boards (PCBs). These machines use a variety of methods to remove contaminants and debris from PCBs, including water, solvents, and ultrasonic waves.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

SMT Auto Aqueous Stencil Cleaning Machine: Improve the Quality and Efficiency of Your SMT Stencil Cleaning Process

Technical Library | 2023-09-13 13:03:25.0

SMT auto aqueous stencil cleaning machines are an essential tool for any SMT production line. These machines use a variety of methods to remove contaminants and debris from SMT stencils, which can cause defects and reliability issues.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Conformal Coating Inspection

Technical Library | 2019-05-21 17:31:39.0

In the field of electronics manufacturing, the end use of the product will always dictate the processes, procedures, and methods, not only for building the product, but also for testing, cleaning, and protecting the assembly in order to assure the level of quality required for proper operation. The need to protect an electronic assembly from its end use environment may stem from anyone of a number of hazardous (or potentially hazardous) conditions. Choosing the type of protective material is dependent upon matching that material’s characteristics with the conditions to be overcome. Naturally, the use of a protective (conformal) coating will require some method of verification to ensure the desired level and type of protection is achieved.

ACI Technologies, Inc.

WHY CLEAN A NO-CLEAN FLUX

Technical Library | 2020-11-04 17:57:41.0

Residues present on circuit boards can cause leakage currents if not controlled and monitored. How "Clean is Clean" is neither easy nor cheap to determine. Most OEMs use analytical methods to assess the risk of harmful residues. The levels that can be associated with clean or dirty are typically determined based on the exposed environment where the part will be deployed. What is acceptably clean for one segment of the industry may be unacceptable for more demanding segments. As circuit assemblies increase in density, understanding cleanliness data becomes more challenging. The risk of premature failure or improper function is typically site specific. The problem is that most do not know how to measure or define cleanliness nor can they recognize process problems related to residues. A new site specific method has been designed to run performance qualifications on boards built with specific soldering materials, reflow settings and cleaning methods. High impedance measurements are performed on break off coupons designed with components geometries used to build the assembly. The test method provides a gauge of potential contamination sources coming from the assembly process that can contribute to electrochemical migration.

KYZEN Corporation

Flux Collection and Self-Clean Technique in Reflow Applications

Technical Library | 2008-05-14 15:44:58.0

This paper will review some basic past and present flux chemistries that affect flux collection methodology. It will also review some of the most common flux collection methods, self-cleaning techniques, and maintenance goals. And, finally, data will be presented from high volume production testing of an advanced flux management system.

Speedline Technologies, Inc.

SMT Process Recommendations Defect Minimization Methods for a No-Clean SMT Process

Technical Library | 1999-05-07 11:35:19.0

Key competitive advantages can be obtained through the minimization of process defects and disruptions. In today's electronic manufacturing processes there are many variables to optimize. By gaining an understanding of what the defects are, and where they come from, is a key step in the process towards defect free/six sigma manufacturing. In the last decade, Surface Mount Technology processes have been slowly converting towards the No-Clean philosophy. This new trend has spawned new processing issues which need to be addressed. This paper will investigate solutions to current problems in the processing of No-Clean SMT processes.

Kester

Cleaning Flux Residue under Leadless Components using Objective Evidence to Determine Cleaning Performance

Technical Library | 2019-08-14 22:20:55.0

Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.

KYZEN Corporation

Recurrent Neural Network-Based Stencil Cleaning Cycle Predictive Modeling

Technical Library | 2023-06-12 18:33:29.0

This paper presents a real-time predictive approach to improve solder paste stencil printing cycle decision making process in surface mount assembly lines. Stencil cleaning is a critical process that influences the quality and efficiency of printing circuit board. Stencil cleaning operation depends on various process variables, such as printing speed, printing pressure, and aperture shape. The objective of this research is to help efficiently decide stencil printing cleaning cycle by applying data-driven predictive methods. To predict the printed circuit board quality level, a recurrent neural network (RNN) is applied to obtain the printing performance for the different cleaning aging. In the prediction model, not only the previous printing performance statuses are included, but also the printing settings are used to enhance the RNN learning. The model is tested using data collected from an actual solder paste stencil printing line. Based on the predicted printing performance level, the model can help automatically identify the possible cleaning cycle in practice. The results indicate that the proposed model architecture can predictively provide accurate solder paste printing process information to decision makers and increase the quality of the stencil printing process.

Binghamton University

Divergence in Test Results Using IPC Standard SIR and Ionic Contamination Measurements

Technical Library | 2017-07-13 16:16:27.0

Controlled humidity and temperature controlled surface insulation resistance (SIR) measurements of flux covered test vehicles, subject to a direct current (D.C.) bias voltage are recognized by a number of global standards organizations as the preferred method to determine if no clean solder paste and wave soldering flux residues are suitable for reliable electronic assemblies. The IPC, Japanese Industry Standard (JIS), Deutsches Institut fur Normung (DIN) and International Electrical Commission (IEC) all have industry reviewed standards using similar variations of this measurement. (...) This study will compare the results from testing two solder pastes using the IPC-J-STD-004B, IPC TM-650 2.6.3.7 surface insulation resistance test, and IPC TM-650 2.3.25 in an attempt to investigate the correlation of ROSE methods as predictors of electronic assembly electrical reliability.

Alpha Assembly Solutions

  1 2 3 Next

cleaning methods searches for Companies, Equipment, Machines, Suppliers & Information