Technical Library: closing (Page 1 of 4)

Introducing Closed-loop Nitrogen Control To Solder Reflow

Technical Library | 2023-01-17 18:07:31.0

To achieve higher levels of consistency in PCB output, process engineers are able to maintain tighter controls and reduce process-related defects by using closed-loop process controls. At every stage of assembly, from screen printing through placement to reflow, closed-loop systems help control the variable factors that can have adverse effects on the process.

Heller Industries Inc.

An Alternative Dispense Process for Application of Catalyst Films on MEA's

Technical Library | 2008-10-01 14:02:27.0

This paper proposes an integrated system for film application process than consists of closed loop mass calibration to assure film thickness, a noncontact fast jetting process with high edge definition capable of applying films for highly selective areas and patterns. A system to obtain homogeneity of the solid-fluid mix is described and results are shared.

ASYMTEK Products | Nordson Electronics Solutions

Corrosion Analysis

Technical Library | 2019-06-03 15:32:40.0

ACI Technologies was pleased to assist a customer by conducting elemental analysis on several assemblies displaying severe corrosion. Several board assemblies had failed in the field and exhibited areas of corrosion in close proximity to onboard components. The most common source of corrosion on electronic assemblies is residual flux. Fluxes are specific chemistries applied during the soldering process which improve the wetting of the solder to both the pad and component when forming the solder joint. They can be highly reactive chemicals that, if left on the assemblies, can lead to corrosion, electrical degradation, and decreased reliability. In the presence of moisture and electrical bias, flux residue can enable dendritic growth as a result of electrochemical migration (ECM).

ACI Technologies, Inc.

Investigation of Through-Hole Capacitor Parts Failures Following Vibration and Stress Testing

Technical Library | 2019-06-21 10:39:15.0

Recently, an ACI Technologies (ACI) customer called to discuss failures that they had observed with some through-hole capacitor parts. The components were experiencing failures following vibration and accelerated stress testing. Upon receipt of the samples, ACI performed three levels of inspection and Energy Dispersive Spectroscopy (EDS) testing to investigate the root cause of the failures. These analyses enabled ACI to verify the elements comprising the solder joints and make the following recommendations in order to prevent future occurrences. The first inspection was to investigate the capacitor leads using optical microscopy, and no anomalies were found that could indicate bad parts from the vendor or improper handling prior to assembly. However, vertical fill in the barrel of the plated through-holes was too close to the IPC-A-610 minimum specification of 75% to determine a pass/fail condition, and therefore required further investigation.

ACI Technologies, Inc.

Selective Solder Fine Pitch Components On High Thermal Mass Assembly

Technical Library | 2020-04-14 15:49:38.0

The number of through-hole components on printed circuit boards (PCB) has declined significantly over the last decade. Miniaturization in electronics has resulted in less THT (through-hole technology) and leads with a finer pitch. For this reason, the soldering of these components has also changed from wave soldering to Point-to-point selective soldering. Soldering these small, fine-pitch components is a challenge when surface mount components (SMD) are positioned very close to THT components on the PCB layout. This study, done in cooperation with a large automotive EMS customer, defines the process windows for through-hole technology for fine-pitch components. It determines what is feasible to solder and defines layout design parameter that make soldering possible with SMD areas and other components on the assembly.

ITW EAE

Stencil Printing 008004/0201 Aperture Components

Technical Library | 2020-04-14 15:56:32.0

This paper will focus on the application requirements of solder printing small aperture designs, concentrating on 008004 (inch) / 0201 (metric) size components, and the results of a design of experiment printing these challenging apertures. As Moore's law continues to be applied to component miniaturization, the next installment of reduced packaging has arrived in the form of the 008004/0201 for resistors and capacitors. Component size roughly the size of a grain of sand presents specific challenges to the solder printing process. To address these challenges, each aspect of the printing process will need be examined. This includes essential machine requirements, including correct squeegee blades, tooling support, and calibrations, to meet the demanding specifications. The correct match and design of materials will be addressed, focusing on the stencil and substrate design along with solder paste and cleaning solvent requirements. A design of experiment will be reviewed that applies the machine and materials discussed, including the printer and Solder Paste Inspection (SPI) setup and the specific machine parameters used. The results of these DOE's will then be closely examined.

ITW EAE

A Non-destructive Approach to Identify Intermittent Failure Locations on Printed Circuit Cards (PCC) that have been Temperature Cycle Tested

Technical Library | 2020-12-07 15:26:06.0

Temperature cycling testing is a method of accelerated life testing done to PCCs that are exposed to normal operation temperature variations over its lifetime. During the testing, intermittent "open" failures can first occur at the hot and cold extremes of the test, exposing weaknesses in the design and assembly. A poor/weak solder joint fatigues, a via trace or barrel cracks, loose connections or a component fails all causing an intermittent open. When not at extreme temperatures, the PCC assembly relaxes, the "open" closes creating electrical connectivity. If you are monitoring the PCC under test in-situ you will know that an intermittent failure has occurred, and the test could be stopped for inspection. If in-situ monitoring was not implemented, you would not know if there were intermittent failures or not. The PCC gets powered up and works fine at room temperature.

ACI Technologies, Inc.

How to Choose the Right PCB Coating Machine Line

Technical Library | 2023-11-07 09:36:38.0

How to Choose the Right PCB Coating Machine Line Selecting the ideal equipment for your PCB coating line can be a complex task. In this article, we will guide you through the critical components of a standard PCB coating machine line and their solutions to common challenges. We'll delve into the line's composition, including the elevator, transfer station, coating machine, inspection station, curing oven, and their interconnectedness through a return conveyor. Let's explore each element and understand its role. Components of a PCB Coating Machine Line: Elevator: The PCB coating process starts with an elevator, efficiently transporting PCB boards to the next stage. Transfer Station: After the elevator, boards are conveyed to a transfer station, preparing them for the coating process. Coating Machine: The heart of the PCB coating line is the coating machine. We offer a range of coating machines, including I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. Inspection Conveyor: Following the coating process, the boards move to an inspection station. The second transfer station is equipped with LED lights and a blue glass cover, enabling operators to closely inspect the coating quality. This feature is vital for ensuring consistent, dust-free coatings. Curing Oven: For UV-curable adhesives, we provide a UV curing oven to effectively solidify the adhesive. Return Conveyor: Beneath the entire line runs a return conveyor, connected to the elevator. This conveyor system efficiently returns PCBs from the last elevator to the first one, reducing manual handling and streamlining operations. The Advantages of the PCB Coating Line Design: 1. Easy Accessibility: The operator's station is strategically located beside the coating machine, ensuring easy access for setup and adjustments. 2. Enhanced Efficiency: The integrated return conveyor eliminates the need for manual transport, optimizing workflow. 3. Quality Control: The inspection station with the blue glass cover enables operators to inspect coatings for quality and cleanliness. 4. Dust Prevention: The blue glass cover also serves as a barrier to prevent dust contamination on freshly coated PCBs. Selecting the right PCB coating machine line is essential for achieving quality and efficiency in your operations. Our meticulously designed equipment line, along with its well-engineered components, can help you attain superior results. If you have further questions or need assistance in choosing the best solution for your specific requirements, please do not hesitate to contact us. We are committed to providing solutions that meet your needs and exceed your expectations.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA

Technical Library | 2023-11-09 08:53:45.0

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Choosing the Right Model I.C.T SMT Coating Machine

Technical Library | 2023-12-01 11:08:12.0

Choosing the Right Model I.C.T SMT Coating Machine In the realm of SMT Coating Machine, I.C.T offers an extensive array of advanced models tailored to diverse production needs. The choice of the right machine significantly influences the efficiency and precision of your conformal coating process. This article will provide an in-depth exploration of I.C.T's PCB conformal coating spray machine models, specifically the I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650, assisting you in making an informed decision aligned with your specific requirements. I.C.T PCB Conformal Coating Spray Machines Overview I.C.T, renowned for its commitment to innovation, quality, and safety, ensures all models hold CE certification. Let's delve into the key distinctions between these models and the essential factors to consider when selecting the ideal machine for your needs. I.C.T-T550: Precision in Simplicity The I.C.T-T550 SMT Coating Machine model features two critical valves: the atomization valve and the precision valve. If you're interested in exploring a variety of coating valves, simply click here for more information. Ideal for applications where fixed valves suffice, the I.C.T-T550, lacking rotation or tilting capabilities, ensures consistent and reliable results for straightforward conformal coating requirements. I.C.T-T550U: Unleash Flexibility For those requiring more versatility, the I.C.T-T550U SMT Coating Machine model is designed to meet your needs. The addition of a rotating U-axis empowers the valves to rotate a full 360 degrees and tilt up to 35 degrees, enabling precise coating in challenging, intricate areas. The I.C.T-T550U's flexibility makes it an excellent choice for a wide range of applications. I.C.T-T600: Doubling Efficiency Closely resembling the I.C.T-T550 SMT Coating Machine, the I.C.T-T600 boasts a unique feature – equipped with two atomization valves. This dual-valve setup enables simultaneous coating of two PCBs, effectively doubling production efficiency. Ideal for applications prioritizing speed and efficiency, the I.C.T-T600 SMT Coating Machine streamlines the coating process. I.C.T-T650: Versatility Redefined In cases requiring different valves for comprehensive coating, the I.C.T-T650 SMT Coating Machine is the solution. This model features two atomization valves and two precision valves, offering exceptional flexibility for diverse conformal coating applications. The I.C.T-T650 SMT Coating Machine ensures precise and reliable results for even the most complex coating needs. Conclusion: PCB Conformal Coating Spray Machines Selecting the right I.C.T PCB conformal coating spray machine is crucial for enhancing the efficiency and effectiveness of your production process. Consider factors such as the size, complexity, and coating requirements of your PCBAs. Rest assured, I.C.T's unwavering commitment to innovation, quality, and safety guarantees the perfect solution to elevate your conformal coating endeavors. If you need further guidance or wish to tap into the expertise of I.C.T professional engineers for designing a customized coating production line, do not hesitate to reach out. We are here to help you achieve optimal results while meeting European safety standards. If uncertain about whether your product requires a PCB dispensing machine or coating machine, feel free to reach out directly or click here to read our comprehensive guide for further insights: Differences Between Coating & Dispensing.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

  1 2 3 4 Next

closing searches for Companies, Equipment, Machines, Suppliers & Information

See Your 2024 IPC Certification Training Schedule for Eptac

Component Placement 101 Training Course
2024 Eptac IPC Certification Training Schedule

Stencil Printing 101 Training Course
2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications
Professional technical team,good service, ready to ship- Various brands pick and place machine!

Low-cost, self-paced, online training on electronics manufacturing fundamentals