Technical Library: de infinity

Are You Ready for Lead Free

Technical Library | 2023-01-17 17:37:45.0

Various international market trends drive electronics manufacturers and their mate- rials and equipment suppliers to develop new assembly techniques to reduce the industry's environmental impact. Two pri- mary forces in this drive are the movements to lead-free assembly and ISO 14000 cer- tification. In response to these factors, reflow technology advances are enabling manufacturers to meet or anticipate the new environmental mandates.

Heller Industries Inc.

Failure Analysis – Using Ion Chromatography And Ion Chromatography/Mass Spec (IC/MS)

Technical Library | 2021-04-29 01:43:34.0

Since the 1980s the electronics industry has utilized ion chromatography (IC) analysis to understand the relationship of ions, and some organics, to product reliability. From component and board fabrication to complete electronic assemblies and their end-use environment, IC analysis has been the de facto method for evaluating ionic cleanliness of electronic hardware.

Foresite Inc.

PU515A 3BSE032401R1 Control board

Technical Library | 2024-08-27 06:17:52.0

销售经理 电子邮件 WhatsApp Skype 乌娜 sales5@mooreplc.com 86-15359408275  +8615359408275 品牌/制造商: ◤ PU515A 3BSE032401R1 ◥ PU515A 的特性: MB300 双运河:使用 MB300 协议进行通信的运河,可能会连接到其他控制系统。 密码:PU515A 的最终目的是实现 PU515、PU518 或 PU519 的前模型。 由于 USB 端口:RTA 与其他表的区别,PU515A 不包括 USB 端口。 为什么选择我们 1.100%原装产品,100%质量保证,价格更具竞争力。 如果您发现假货,请立即联系我们!我们承担运费!我们将免费为您寄送新产品! 2.周到的服务 专业的售后服务。 3. 快速发货 我们有大量库存,可以立即发货。 推荐型号 本利内华达 330500-01-04 普罗软件 MVI94-MCM 本利内华达 330780-50-00 霍尼韦尔 05701-A-0301 本利内华达 330104-00-06-10-02-00 霍尼韦尔 FC-电源-UNI2450U 本利内华达 9571-50 普罗软件 MVI46-MNET 本利内华达 177230-00-01-05 霍尼韦尔 05704-A-0135 本利内华达 330180-51-CN ICS T8110B 通用电气 IC697ACC701 伍德沃德 8273-1011 本利内华达 136188-02 ABB HIEE300867R0001 PPB022 DE01 通用电气 IC695ETM001 特利科奈斯 3603E 易宝 PR6424/000-030 CON021 霍尼韦尔 51198685-100 SPS5710-2-LF 霍尼韦尔 CC-TUIO31 51306875-176 通用电气 DS200PTCTG1BAA 福克斯堡 FBM201 P0914SQ 通用电气 UR8LH 通用电气 IS210HSLAH1ADE 霍尼韦尔 CC-PAIH02 51405038-375 霍尼韦尔 51198947-100F 易宝 PR9268/200-000

Moore Automation LIMITED

Coatings and Pottings: A Critical Update

Technical Library | 2021-08-11 01:00:37.0

Conformal coatings and potting materials continue to create issues for the electronics industry. This webinar will dig deeper into the failure modes of these materials, specifically issues with Coefficient of Thermal Expansion (CTE), delamination, cracking, de-wetting, pinholes/bubbles and orange peel issues with conformal coatings and what mitigation techniques are available. Similarly, this webinar will look at the failure modes of potting materials, (e.g Glass Transition Temperature (Tg), PCB warpage, the effects of improper curing and potential methods for correcting these situations.

DfR Solutions (acquired by ANSYS Inc)

Tombstoning Of 0402 And 0201 Components: "A Study Examining The Effects Of Various Process And Design Parameters On Ultra-Small Passive Devices"

Technical Library | 2021-09-01 15:31:39.0

The long-standing trend in the electronics industry has been the miniaturization of electronic components. It is projected that this trend will continue as Original Equipment Manufacturers (OEMs) and Electronic Manufacturing Service (EMS) providers strive to reduce "real estate" on printed circuit boards. Typically, the miniaturization of components can be achieved by integration or size reduction. At present, size reduction is considered to be more cost effective and flexible than integration. Passive components, which are used in limiting current, terminating transmission lines and de-coupling switching noise, are the primary focus in size reduction due to their variety of uses.

Plexus Corporation

Effect of Silicone Contamination on Assembly Processes

Technical Library | 2013-02-07 17:01:46.0

Silicone contamination is known to have a negative impact on assembly processes such as soldering, adhesive bonding, coating, and wire bonding. In particular, silicone is known to cause de-wetting of materials from surfaces and can result in adhesive failures. There are many sources for silicone contamination with common sources being mold releases or lubricants on manufacturing tools, offgassing during cure of silicone paste adhesives, and residue from pressure sensitive tape. This effort addresses silicone contamination by quantifying adhesive effects under known silicone contaminations. The first step in this effort identified an FT-IR spectroscopic detection limit for surface silicone utilizing the area under the 1263 cm-1 (Si-CH3) absorbance peak as a function of concentration (µg/cm2). The next step was to pre-contaminate surfaces with known concentrations of silicone oil and assess the effects on surface wetting and adhesion. This information will be used to establish guidelines for silicone contamination in different manufacturing areas within Harris Corporation... First published in the 2012 IPC APEX EXPO technical conference proceedings.

Harris Corporation

Determination of Copper Foil Surface Roughness from Micro-section Photographs

Technical Library | 2013-04-25 11:42:01.0

Specification and control of surface roughness of copper conductors within printed circuit boards (PCBs) are increasingly desirable in multi-GHz designs as a part of signal-integrity failure analysis on high-speed PCBs. The development of a quality-assurance method to verify the use of foils with specified roughness grade during the PCB manufacturing process is also important... First published in the 2012 IPC APEX EXPO technical conference proceedings.

Cisco Systems, Inc.

Closed‑Loop Recycling of Copper from Waste Printed Circuit Boards Using Bioleaching and Electrowinning Processes

Technical Library | 2021-02-04 01:56:56.0

In the present study, a model of closed-loop recycling of copper from PCBs is demonstrated, which involves the sequential application of bioleaching and electrowinning to selectively extract copper. This approach is proposed as part of the solution to resolve the challenging ... doi.org/10.1007/s12649-020-01128-9

Waste and Biomass Valorization

A Flexible Front-End for Wearable Electrochemical Sensing

Technical Library | 2022-01-19 17:06:16.0

This work presents the design and the realization of a flexible front-end circuitry for electrochemical sensing with wearable devices. The hardware combines readout circuitry for amperometric and Open Circuit Potential (OCP) measurements. The sensing platforms are dedicated to lactate and lithium detection in sweat, hence allowing the monitoring of athletes under physical effort.

Swiss Federal Institute of Technology Lausanne - Integrated Systems Laboratory (Laboratoire des Systèmes Intégrés – LSI)

Development of a Consistent and Reliable Thermal Conductivity Measurement Method, Adapted to Typical Composite Materials Used in the PCB Industry

Technical Library | 2017-05-04 17:35:01.0

Most of today's printed circuit board base materials are anisotropic and it is not possible to use a simple method to measure thermal conductivity along the different axis, especially when a good accuracy is expected. Few base material suppliers' datasheet show X, Y and Z thermal conductivities. In most cases, a single value is given, moreover determined with a generic methodology, and not necessarily adapted to the reality of glass-reinforced composites with a strong anisotropy.After reminding of the fundamentals in thermal science, this paper gives an overview of the state-of the art in terms of thermal conductivity measurement on PCB base materials, and some typical values. It finally proposes an innovative method called transient fin method, and associated test sample, to perform reliable and consistent in plane thermal conductivity measurement on anisotropic PCB base materials.

CIMULEC

  1 2 Next

de infinity, ea, han 01 searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

High Precision Fluid Dispensers
Void Free Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
PCB Handling with CE

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
Electronic Solutions R3

Thermal Transfer Materials.