Technical Library: flux clean (Page 1 of 5)

Function and Operational Theory of Condenser Tube Flux Collection System

Technical Library | 2023-01-17 17:50:59.0

Heller's new Condenser Tube Flux Recovery System is designed to provide more efficient flux collection than earlier Heller flux collection systems; while providing minimal down time for inspection and cleaning. The entire system easily fits within the rear of the top shell of an 1800-EXL oven. The system utilizes a different set of top shell caps specially designed to provide the best serviceability of both the flux collection system and maintenance of the heater zone blower motors.

Heller Industries Inc.

Flux Collection and Self-Clean Technique in Reflow Applications

Technical Library | 2008-05-14 15:44:58.0

This paper will review some basic past and present flux chemistries that affect flux collection methodology. It will also review some of the most common flux collection methods, self-cleaning techniques, and maintenance goals. And, finally, data will be presented from high volume production testing of an advanced flux management system.

Speedline Technologies, Inc.

Cleaning PCB's in Electronics - Understanding Today's Needs.

Technical Library | 2014-03-27 14:50:01.0

Because of the phase out of CFC's and HCFC's, standard solder pastes and fluxes evolved from RA and RMA fluxes, to No-Clean, to low residue No-Clean, to very low residue No-Clean. Many companies came out with their cleaning solutions, aqueous and semi-aqueous, with each product release being more innovative than the previous one. Unfortunately for most of the suppliers of cleaners, two other trends appeared; lead-free soldering and the progressive miniaturization of electronic devices.

Inventec Performance Chemicals

Cleaning PCBs in Electronics: Understanding Today's Needs

Technical Library | 2022-02-16 15:34:32.0

Because of the phase-out of CFCs and HCFCs, standard solder pastes and fluxes evolved from RA and RMA fluxes to No-Clean, to low residue No-Clean, to very low residue No-Clean. Many companies came out with their cleaning solutions, aqueous and semi-aqueous, with each product release being more innovative than the previous one. Unfortunately for most of the suppliers of cleaners, two other trends appeared; lead-free soldering and the progressive miniaturization of electronic devices

Inventec Performance Chemicals

Using Hansen Space to Optimize Solvent Based Cleaning Processes for Manufacturing Electronic Assemblies.

Technical Library | 2009-07-09 17:23:07.0

Sometimes you just cannot clean with water. Good examples of this are: circuits with batteries attached, cleaning prior to encapsulation, ionic cleanliness testing, and non-sealed or other water sensitive parts. High impedance or high voltage circuits need to be cleaned of flux residues and other soils to maximize performance and reliability and, in these types of circuits; water can be just as detrimental as fluxes. When solvent cleaning is called for, Hansen solubility parameters can help target the best solvent or solvent blend to remove the residue of interest, and prevent degradation of the assembly being manufactured. In short, using this approach can time, manufacturing cost and reduce product liability.

Austin American Technology

Validity of the IPC R.O.S.E. Method 2.3.25 Researched

Technical Library | 2010-06-10 21:01:48.0

This paper researches the effectiveness of the R.O.S.E. cleanliness testing process for dissolving and measuring ionic contaminants from boards soldered with no-clean and lead-free flux technologies.

KYZEN Corporation

Cleaning Flux Residue under Leadless Components using Objective Evidence to Determine Cleaning Performance

Technical Library | 2019-08-14 22:20:55.0

Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.

KYZEN Corporation

A Novel Solution for No-Clean Flux not Fully Dried under Component Terminations

Technical Library | 2017-08-17 12:28:30.0

At SMT assembly, flux outgassing/drying is difficult for devices with poor venting channel, and resulted in insufficiently dried/burnt-off flux residue for no-clean process. Examples including: Large low stand-off components such as QFN, LGA Components covered under electromagnetic shield which has either no or few venting holes Components assembled within cavity of board Any other devices with small open space around solder joints

Indium Corporation

Reduced Oxide Soldering Activation (ROSA)

Technical Library | 2007-07-19 15:15:11.0

ROSA is a surface restoration technique that removes hard to reduce species like metal oxides or sulfides. At the time of its development, the focus was on solderability and compliance to environmental regulations. Industry trends and regulatory changes as a result of the Montreal Protocol were the driver for much of the concern over environmental compliance. The result was an increase in the development of no-clean and water soluble fluxes and the removal of halogenated cleaning chemistries.

Electronics Manufacturing Productivity Facility (EMPF)

Optimizing Batch Cleaning Process Parameters for Removing Lead-Free Flux Residues on Populated Circuit Assemblies

Technical Library | 2009-09-18 14:52:06.0

Electronic assembly cleaning processes are becoming increasingly more complex because of global environmental mandates and customer driven product performance requirements. Manufacturing strategies today require process equivalence. That is to say, if a product is made or modified in different locations or processes around the world, the result should be the same. If cleaning is a requirement, will existing electronic assembly cleaning processes meet the challenge? Innovative cleaning fluid and cleaning equipment designs provide improved functionality in both batch and continuous inline cleaning processes. The purpose of this designed experiment is to report optimized cleaning process parameters for removing lead-free flux residues on populated circuit assemblies using innovative cleaning fluid and batch cleaning equipment designs.

Austin American Technology

  1 2 3 4 5 Next

flux clean searches for Companies, Equipment, Machines, Suppliers & Information