Technical Library: gold finger inspection (Page 1 of 1)

Platings for Interconnections

Technical Library | 2019-06-04 10:19:46.0

Interconnection technology relies very heavily on the ability of the conductors on a printed wiring assembly to maintain reliable signal integrity. Harsh environmental factors can precipitate a loss of conductivity due to oxidation and corrosion. Connections are typically soldered or inserted using pressure fitted connectors to obtain enough surface contact to meet the electrical conductivity requirements. In pressure contacts, surface integrity is especially critical where the abrasive effects of retraction and insertion can wear off the metallic finish from the contact area. This can expose the underlying copper or nickel and lead to increased resistance at the contact points. These types of conductors are frequently found in card edge connectors where the terminations are plated with a layer of nickel and gold (frequently referred to as gold fingers). A hard gold is typically used containing very small amounts of nickel and cobalt to increase the wear resistance.

ACI Technologies, Inc.

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

  1  

gold finger inspection searches for Companies, Equipment, Machines, Suppliers & Information

INSPECTION TECH
INSPECTION TECH

Our Company handle AOI (Auto Optical Inspection) and SPI (Solder Paste Inspection) Machines.

Equipment Dealer / Broker / Auctions

Hwaseong-si, Gyeonggi-do, Korea
Hwaseong-si, South Korea

Phone: +82-1029254936

Pillarhouse USA for Selective Soldering Needs

Wave Soldering 101 Training Course
Pillarhouse USA for handload Selective Soldering Needs

High Precision Fluid Dispensers
Best SMT Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications


"回流焊炉"