Technical Library: hole size tolerance[0] (Page 1 of 1)

Selective Soldering and the Modular Approach

Technical Library | 2019-08-08 10:23:51.0

High mix production is the mainstay of many electronics assembly plants. Lot sizes and board complexities vary and the boards are often mixed technology, comprising a blend of both surface mount and through-hole technology. Modularizing a production line enables a clear distinction between one type of assembly process and another. This article assumes a modern factory where a job can be routed to the selective soldering machine module, the hand assembly bench, or a combination of both. The decision rules of routing a circuit board through hand assembly versus automated selective soldering are discussed. Hand assembly soldering operations require no explanation.

ACI Technologies, Inc.

Advanced Packaging of SMT Assemblies for Greater Cost Reduction

Technical Library | 2019-06-06 13:40:47.0

Legacy electronics assemblies, such as through-hole (Figure 1) and connectorized component packages, are robust and prevalent throughout industry. However, each of these assembly methods have reached their limits in terms of weight, volume, reliability, and most importantly cost. With cost reduction of assemblies now the primary focus area throughout the electronics industry, there is more of a need than ever to implement the latest advancements in surface mount technology (SMT) into electronics assembly designs. Although SMT has been utilized in the electronics industry for many years, implementation of the technology is still in the ever-evolving process of reducing component footprint size, component spacing, and component I/O pitch. Implementation of the most up-to-date SMT processes provides optimal weight, volume, and cost savings, for any type of assembly.

ACI Technologies, Inc.

Package-on-Package (PoP) for Advanced PCB Manufacturing Process

Technical Library | 2021-12-16 01:45:05.0

In the 1990's, both BGA (Ball Grid Array) and CSP (Chip Size Package) are entering their end in the front-end packaging materials and process technology. Both BGA and CSP like SMD (Surface Mount Device) from the I 980's and THD (Through-Hole mount Device) from the 1970's are reaching its own impasse in terms of maximizing its electrical, mechanical, and thermal performances, size, weight, and reliability.

Samsung Electro-Mechanics

PCB Fabrication Processes and Their Effects on Fine Copper Barrel Cracks

Technical Library | 2015-12-23 16:57:27.0

The onset of copper barrel cracks is typically induced by the presence of manufacturing defects. In the absence of discernible manufacturing defects, the causes of copper barrel cracks in printed circuit board (PCB) plated through holes is not well understood. Accordingly, there is a need to determine what affects the onset of barrel cracks and then control those causes to mitigate their initiation.The objective of this research is to conduct a design of experiment (DOE) to determine if there is a relationship between PCB fabrication processes and the prevalence of fine barrel cracks. The test vehicle used will be a 16-layer epoxy-based PCB that has two different sized plated through holes as well as buried vias.

Raytheon

Conquering SMT Stencil Printing Challenges with Today's Miniature Components

Technical Library | 2023-06-12 16:52:47.0

The technological advancement of component and PCB technology from through-hole to surface mount (SMT) is a major factor in the miniaturization of today's electronics. Smaller and smaller component sizes and more densely packed PCBs lead to more powerful designs in much smaller product packages. With advancement, however, comes a new set of challenges in building these smaller, more complex assemblies. This is the challenge original equipment manufacturers (OEM) and contract manufacturers (CM) face today.

Fine Line Stencil, Inc.

Via Fill and Through Hole Plating Process with Enhanced TH Microdistribution

Technical Library | 2019-07-17 17:56:34.0

The increased demand for electronic devices in recent years has led to an extensive research in the field to meet the requirements of the industry. Electrolytic copper has been an important technology in the fabrication of PCBs and semiconductors. Aqueous sulfuric acid baths are explored for filling or building up with copper structures like blind micro vias (BMV), trenches, through holes (TH), and pillar bumps. As circuit miniaturization continues, developing a process that simultaneously fills vias and plates TH with various sizes and aspect ratios, while minimizing the surface copper thickness is critical. Filling BMV and plating TH at the same time, presents great difficulties for the PCB manufactures. The conventional copper plating processes that provide good via fill and leveling of the deposit tend to worsen the throwing power (TP) of the electroplating bath. TP is defined as the ratio of the deposit copper thickness in the center of the through hole to its thickness at the surface. In this paper an optimization of recently developed innovative, one step acid copper plating technology for filling vias with a minimal surface thickness and plating through holes is presented.

MacDermid Inc.

Via In Pad - Conductive Fill or Non-Conductive Fill?

Technical Library | 2020-07-15 18:29:34.0

In the early 2000s the first fine-pitch ball grid array devices became popular with designers looking to pack as much horsepower into as small a space as possible. "Smaller is better" became the rule and with that the mechanical drilling world became severely impacted by available drill bit sizes, aspect ratios, and plating methodologies. First of all, the diameter of the drill needed to be in the 0.006" or smaller range due to the reduction of pad size and spacing pitch. Secondly, the aspect ratio (depth to diameter) became limited by drill flute length, positional accuracy, rigidity of the tools (to prevent breakage), and the throwing power of acid copper plating systems. And lastly, the plating needed to close up the hole as much as possible, which led to problems with voiding, incomplete fill, and gas/solution entrapment.

Advanced Circuits

ACHIEVING EXCELLENT VERTICAL HOLE FILL ON THERMALLY CHALLENGING BOARDS USING SELECTIVE SOLDERING

Technical Library | 2023-11-14 19:52:11.0

The continuous drive in the Electronics industry to build new and innovative products has caused competitive design companies to develop assemblies with consolidated PCB designs, decreased physical sizes, and increased performance characteristics. As a result of these new designs, manufacturers of electronics are forced to contend with many challenges. One of the most significant challenges being the processing of thru-hole components on high thermal mass PCBs having the potential to exceed 20 layers in thicknesses and have copper mass contents of over 40oz. High thermal mass PCBs, coupled with the use of mixed technologies, decreased component spacing, and the change from Tin Lead Solder to Lead Free Alloys has lead many manufacturing facilities to purchase advanced soldering equipment to process challenging assemblies with a high degree of repeatability.

Plexus Corporation

Innovative Electroplating Processes for IC Substrates - Via Fill, Through Hole Fill, and Embedded Trench Fill

Technical Library | 2021-06-21 19:34:02.0

In this era of electronics miniaturization, high yield and low-cost integrated circuit (IC) substrates play a crucial role by providing a reliable method of high density interconnection of chip to board. In order to maximize substrate real-estate, the distance between Cu traces also known as line and space (L/S) should be minimized. Typical PCB technology consists of L/S larger than 40 µ whereas more advanced wafer level technology currently sits at or around 2 µm L/S. In the past decade, the chip size has decreased significantly along with the L/S on the substrate. The decreasing chip scales and smaller L/S distances has created unique challenges for both printed circuit board (PCB) industry and the semiconductor industry. Fan-out panel-level packaging (FOPLP) is a new manufacturing technology that seeks to bring the PCB world and IC/semiconductor world even closer. While FOPLP is still an emerging technology, the amount of high-volume production in this market space provide a financial incentive to develop innovative solutions in order to enable its ramp up. The most important performance aspect of the fine line plating in this market space is plating uniformity or planarity. Plating uniformity, trace/via top planarity, which measures how flat the top of the traces and vias are a few major features. This is especially important in multilayer processing, as nonuniformity on a lower layer can be transferred to successive layers, disrupting the device design with catastrophic consequences such as short circuits. Additionally, a non-planar surface could also result in signal transmission loss by distortion of the connecting points, like vias and traces. Therefore, plating solutions that provide a uniform, planar profile without any special post treatment are quite desirable.

MacDermid Inc.

  1  

hole size tolerance[0] searches for Companies, Equipment, Machines, Suppliers & Information