Technical Library: juki placement head (Page 1 of 1)

How to calibrate JUKI CF feeder

Technical Library | 2017-07-21 03:23:47.0

1.Choose a feeder with best chip-placement ratio, install the Calibration Ruler on this feeder, then place feeder to calibration equipment’s position table.

ZK Electronic Technology Co., Limited

SMT Placement for ICs, Connectors and Odd-Shaped Components

Technical Library | 2009-11-18 23:37:52.0

Accurate component placement is a basic requirement for any pick and place machine. The first step towards accurate placement is accurate centering, or measurement of the component’s position on the placement head. One of the most widely used centering methods for ICs, connectors, and odd‐shaped components are a camera based system that measures the component position relative to a known point. Camera based centering systems include three main elements: lighting, camera, and software. Each of these elements are critical to obtaining an accurate measurement of the component and ultimately for accurate component placement on the PCB. As the old adage goes, the system is only as strong as its weakest link.

Juki Automation Systems

Integrated Offset Placement in Electronics Assembly Equipment - The Answer for Solder Paste Misalignment

Technical Library | 2008-10-29 18:45:53.0

Growing demand for compact, multi-function electronics products has accelerated component miniaturization and high-density placement, creating new challenges for the electronics manufacturing industry. It is no longer adequate to simply place parts accurately per a pre-defined CAD assembly program because solder paste alignment errors are increasing for numerous reasons. The solution to this problem is a system in which the placement machine can automatically detect and compensate for misalignment of the solder paste to produce high-quality boards regardless of the process errors beforehand.

Juki Automation Systems

A PROCEDURE TO DETERMINE HEAD-IN-PILLOW DEFECT AND ANALYSIS OF CONTRIBUTING FACTORS

Technical Library | 2020-07-02 01:14:44.0

Head-in-Pillow (HIP) defects are a growing concern in the electronics industry. These defects are usually believed to be the result of several factors, individually or in combination. Some of the major contributing factors include: surface quality of the BGA spheres, activity of the paste flux, improper placement / misalignment of the components, a non-optimal reflow profile, and warpage of the components. To understand the role of each of these factors in producing head-in-pillow defects and to find ways to mitigate them, we have developed two in-house tests.

Cookson Electronics

  1  

juki placement head searches for Companies, Equipment, Machines, Suppliers & Information