Technical Library: longer (Page 1 of 31)

Void Reduction in Bottom Terminated Components Using Vacuum Assisted Reflow

Technical Library | 2019-07-10 23:36:14.0

Pockets of gas, or voids, trapped in the solder interface between discrete power management devices and circuit assemblies are, unfortunately, excellent insulators, or barriers to thermal conductivity. This resistance to heat flow reduces the electrical efficiency of these devices, reducing battery life and expected functional life time of electronic assemblies. There is also a corresponding increase in current density (as the area for current conduction is reduced) that generates additional heat, further leading to performance degradation.

Heller Industries Inc.

Fluid Flow Mechanics Key To Low Standoff Cleaning

Technical Library | 2009-09-18 14:42:37.0

In recent years, various studies have been issued on cleaning under low standoff components; most however, with incomplete information. It is essential to revisit and describe the latest challenges in the market, identifying obvious gaps in available information. Such information is crucial for potential and existing users to fully address the cleanliness levels under their respective components. With the emergence of lead-free soldering and even smaller components, new challenges have arisen including cleaning in gaps of less than 1-mil.

ZESTRON Americas

Dam and Fill Encapsulation for Microelectronic Packages

Technical Library | 1999-08-27 09:29:49.0

Contract packaging houses have to contend with a large mix of die types and products. Flexibility and quick turnaround of package types is a must in this industry. Traditional methods of die encapsulation, (i.e., use of transfer-molding techniques), are only cost effective when producing a large number of components. Liquid encapsulants now provide similar levels of reliability1, and are cost effective...

Nordson ASYMTEK

Considerations in Dispensing Conformal Coatings

Technical Library | 1999-08-27 09:27:10.0

Conformal coating is a material that is applied to electronic products or assemblies to protect them from solvents, moisture, dust or other contaminants that may cause harm. Coating also prevents dendrite growth, which may result in product failure. This paper will discuss the variables that affect the application of conformal coatings, and review in detail those variables that impact the process of selective coating of printed circuit boards.

Nordson ASYMTEK

Throughput vs. Wet-Out Area Study for Package on Package (PoP) Underfill Dispensing

Technical Library | 2012-12-17 22:05:22.0

Package on Package (PoP) has become a relatively common component being used in mobile electronics as it allows for saving space in the board layout due to the 3D package layout. To insure device reliability through drop tests and thermal cycling as well as for protecting proprietary programming of the device either one or both interconnect layers are typically underfilled. When underfill is applied to a PoP, or any component for that matter, there is a requirement that the board layout is such that there is room for an underfill reservoir so that the underfill material does not come in contact with surrounding components. The preferred method to dispensing the underfill material is through a jetting process that minimizes the wet out area of the fluid reservoir compared to traditional needle dispensing. To further minimize the wet out area multiple passes are used so that the material required to underfill the component is not dispensed at once requiring a greater wet out area. Dispensing the underfill material in multiple passes is an effective way to reduce the wet out area and decrease the distance that surrounding components can be placed, however, this comes with a process compromise of additional processing time in the underfill dispenser. The purpose of this paper is to provide insight to the inverse relationship that exists between the wet out area of the underfill reservoir and the production time for the underfill process.

Nordson ASYMTEK

Advanced Solder Paste Dispensing

Technical Library | 2008-10-15 20:16:12.0

Solder paste dispensing is usually considered a slow process. Due to the speed advantages, screen printing is used to apply solder paste whenever possible. However, screen printing is not always an option. Leveraging the high speed of piezo drive technology opens the door to a broad range of solder paste dispensing applications. The ability to dispense dots under 300-μm diameter, even as small as 125 μm, enables BGA rework, small geometry deposits for miniaturized passive components, electrical connections in recessed cavities, and RF shield attach for handheld devices.

Nordson ASYMTEK

Higher Defluxing Temperature and Low Standoff Component Cleaning - A Connection?

Technical Library | 2020-11-04 17:49:45.0

OEMs and CMs designing and building electronic assemblies for high reliability applications are typically faced with a decision to clean or not to clean the assembly. If ionic residues remain on the substrate surface, potential failure mechanisms, including dendritic growth by electrochemical migration reaction and leakage current, may result. These failures have been well documented. If a decision to clean substrates is made, there are numerous cleaning process options available. For defluxing applications, the most common systems are spray-in-air, employing either batch or inline cleaning equipment and an engineered aqueous based cleaning agent. Regardless of the type of cleaning process adopted, effective cleaning of post solder residue requires chemical, thermal and mechanical energies. The chemical energy is derived from the engineered cleaning agent; the thermal energy from the increased temperature of the cleaning agent, and the mechanical energy from the pump system employed within the cleaning equipment. The pump system, which includes spray pressure, spray bar configuration and nozzle selection, is optimized for the specific process to create an efficient cleaning system. As board density has increased and component standoff heights have decreased, cleaning processes are steadily challenged. Over time, cleaning agent formulations have advanced to match new solder paste developments, spray system configurations have improved, and wash temperatures (thermal energy) have been limited to a maximum of 160ºF. In most cases, this is due to thermal limitations of the materials used to build the polymer-based cleaning equipment. Building equipment out of stainless steel is an option, but one that may be cost prohibitive. Given the maximum allowable wash temperature, difficult cleaning applications are met by increasing the wash exposure time; including reducing the conveyor speed of inline cleaners or extending wash time in batch cleaners. Although this yields effective cleaning results, process productivity may be compromised. However, high temperature resistant polymer materials, capable of withstanding a 180°F wash temperature, are now available and can be used in cleaning equipment builds. For this study, the authors explored the potential for increasing cleaning process efficiency as a result of an increase in thermal energy due to the use of higher wash temperature. The cleaning equipment selected was an inline cleaner built with high temperature resistant polymer material. For the analysis, standard substrates were used. These were populated with numerous low standoff chip cap components and soldered with both no-clean tin-lead and lead-free solder pastes. Two aqueous based cleaning agents were selected, and multiple wash temperatures and wash exposure times were evaluated. Cleanliness assessments were made through visual analysis of under-component inspection, as well as localized extraction and Ion Chromatography in accordance with current IPC standards.

ZESTRON Americas

Increase Your Process Control and Lower Cost of Ownership

Technical Library | 2012-11-12 14:06:48.0

With consumers constantly looking for lower prices on their technology products and manufacturers trying to squeak out higher margins from their production lines, the need for process control and lower overhead costs have become even more important. One sector that is often overlooked is the hand soldering area of the factory. Many factories have been struggling with antiquated soldering systems for years. In some cases they are trying to make their investment in stations last much longer than they were designed for, or they are falsely trying to recoup their original investment ‐ all at the cost of higher operating expenses or even worse, reduced operator thru‐put.

Metcal

Rework Challenges for Smart Phones and Tablets

Technical Library | 2015-04-23 18:48:18.0

Smart phones are complex, costly devices and therefore need to be reworked correctly the first time. In order to meet the ever-growing demand for performance, the complexity of mobile devices has increased immensely, with more than a 70% greater number of packages now found inside of them than just a few years ago. For instance, 1080P HD camera and video capabilities are now available on most high end smart phones or tablet computers, making their production more elaborate and expensive. The printed circuit boards for these devices are no longer considered disposable goods, and their bill of materials start from $150.00, with higher end smart phones going up to $238.00, and tablets well over $300.00.

Metcal

Surface Mount Rework Techniques

Technical Library | 1999-05-09 12:51:38.0

This Technical Note outlines, step by step, the easiest ways to remove and replace surface mounted devices, using the lowest possible temperatures. This document discusses the following topics: Removal and replacement of discrete and passive components (capacitors, resistors, SOTs), Removal of two-sided components (SOICs, SOJs, TSOPs), Removal of quad components (PLCCs, QFPs), Replacement of quad components including fine-pitched devices.

Metcal

  1 2 3 4 5 6 7 8 9 10 Next

longer searches for Companies, Equipment, Machines, Suppliers & Information

2022 Eptac IPC Certification Training Schedule

MSD Dry Cabinets
SMT feeders

World Source Equipment: Used equipment sale. Hundreds of items on sale.
Fluid Dispense Pump Integration

High Precision Fluid Dispensers