Technical Library: markings washing off (Page 1 of 1)

Cleaning

Technical Library | 2019-05-23 10:38:07.0

Solvent and co-solvent cleaning involves the use of engineered solvents in a vapor phase system. The solvents classically used were Class 1 Ozone Depleting Substances, but new types of solvents have been developed that are less environmentally harmful. In some cases, isopropyl alcohol is used with a co-solvent. In these types of cleaning systems, a cloud of boiling vapor solvent is maintained between a boil sump and a cooling coil. When the items to be cleaned are immersed in the vapor cloud, the solvent condenses on the assemblies and acts to dissolve the residues. These processes usually involve a final rinse step outside of the vapor cloud to ensure that all dissolved residues are washed off the assemblies (Figure 1).

ACI Technologies, Inc.

WHY CLEAN A NO-CLEAN FLUX

Technical Library | 2020-11-04 17:57:41.0

Residues present on circuit boards can cause leakage currents if not controlled and monitored. How "Clean is Clean" is neither easy nor cheap to determine. Most OEMs use analytical methods to assess the risk of harmful residues. The levels that can be associated with clean or dirty are typically determined based on the exposed environment where the part will be deployed. What is acceptably clean for one segment of the industry may be unacceptable for more demanding segments. As circuit assemblies increase in density, understanding cleanliness data becomes more challenging. The risk of premature failure or improper function is typically site specific. The problem is that most do not know how to measure or define cleanliness nor can they recognize process problems related to residues. A new site specific method has been designed to run performance qualifications on boards built with specific soldering materials, reflow settings and cleaning methods. High impedance measurements are performed on break off coupons designed with components geometries used to build the assembly. The test method provides a gauge of potential contamination sources coming from the assembly process that can contribute to electrochemical migration.

KYZEN Corporation

Simulation of Droplet Jetting of a Non-Newtonian Mixed Suspension

Technical Library | 2021-06-15 18:40:53.0

The jet printing of a dense mixed non-Newtonian suspension is based on the rapid displacement of fluid through a nozzle, the forming of a droplet and eventually the break-off of the filament. The ability to model this process would facilitate the development of future jetting devices. The purpose of this study is to propose a novel simulation framework and to show that it captures the main effects such as droplet shape, volume and speed. In the framework, the time dependent flow and the fluid-structure interaction between the suspension, the moving piston and the deflection of the jetting head is simulated. The system is modelled as a two phase system with the surrounding air being one phase and the dense suspension the other. Hence, the non-Newtonian suspension is modelled as a mixed single phase with properties determined from material testing. The simulations were performed with two coupled in-house solvers developed at Fraunhofer-Chalmers Centre; IBOFlow, a multiphase flow solver and LaStFEM, a large strain FEM solver. Jetting behaviour was shown to be affected not only by piston motion and fluid rheology, but also by the energy loss in the jetting head. The simulation results were compared to experimental data obtained from an industrial jetting head.

Fraunhofer-Chalmers Research Centre for Industustrial Mathematics

  1  

markings washing off searches for Companies, Equipment, Machines, Suppliers & Information

Electronics Equipment Consignment

High Precision Fluid Dispensers
Solder Paste Dispensing

Wave Soldering 101 Training Course
Fluid Dispensing, Staking, TIM, Solder Paste

World's Best Reflow Oven Customizable for Unique Applications
Selective soldering solutions with Jade soldering machine

High Resolution Fast Speed Industrial Cameras.