Technical Library: optimizing and the and printing and process (Page 1 of 2)

On Oreology, the fracture and flow of "milk's favorite cookie® "

Technical Library | 2024-08-29 18:30:46.0

The mechanical experience of consumption (i.e., feel, softness, and texture) of many foods is intrinsic to their enjoyable consumption, one example being the habit of twisting a sandwich cookie to reveal the cream. Scientifically, sandwich cookies present a paradigmatic model of parallel plate rheometry in which a fluid sample, the cream, is held between two parallel plates, the wafers. When the wafers are counterrotated, the cream deforms, flows, and ultimately fractures, leading to separation of the cookie into two pieces. We introduce Oreology (/Oriːˈɒl@dʒi/), from the Nabisco Oreo for "cookie" and the Greek rheo logia for "flow study," as the study of the flow and fracture of sandwich cookies. Using a laboratory rheometer, we measure failure mechanics of the eponymous Oreo's "creme" and probe the influence of rotation rate, amount of creme, and flavor on the stress–strain curve and postmortem creme distribution. The results typically show adhesive failure, in which nearly all (95%) creme remains on one wafer after failure, and we ascribe this to the production process, as we confirm that the creme-heavy side is uniformly oriented within most of the boxes of Oreos. However, cookies in boxes stored under potentially adverse conditions (higher temperature and humidity) show cohesive failure resulting in the creme dividing between wafer halves after failure. Failure mechanics further classify the creme texture as "mushy." Finally, we introduce and validate the design of an open-source, three-dimensionally printed Oreometer powered by rubber bands and coins for encouraging higher precision home studies to contribute new discoveries to this incipient field of study

1st Place Machinery Inc.

Understanding and optimizing delamination/recycling of printed circuit boards using a supercritical carbon dioxide process

Technical Library | 2024-09-02 17:01:54.0

A printed circuit board (PCB) is an integral component of any electronic product and is among the most challenging components to recycle. While PCB manufacturing processes undergo generations of innovation and advancement with 21st century technologies, the recycling of PCBs primarily employs 1920's shredding and separation technologies. There is a critical need for alternative PCB recycling routes to satisfy the increasing environmental demands. Previous work has developed an environmentally benign supercritical fluid process that successfully delaminated the PCB substrates and separated the PCB layers. While this work was successful in delamination of the PCB substrates, further understanding is needed to maximize the interactions between the supercritical fluid and PCB for an optimal processing scenario. As such, this research presents an exploratory study to further investigate the supercritical fluid PCB recycling process by using supercritical carbon dioxide and an additional amount of water to delaminate PCB substrates. The focus of this study is to test delamination success at low temperature and pressure supercritical conditions in comparison to the previous studies. Furthermore, material characterization methods, such as differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared spectroscopy, are included to study the delaminating mechanisms. Results from the recycling process testing showed that the PCB substrates delaminated easily and could be further separated into copper foils, glass fibers and polymers. Surprisingly, the material characterization suggested that there were no significant changes in glass transition temperature, crosslink density, and FTIR spectra of the PCBs before and after the supercritical fluid process.

Arizona State University

Tutorial: How to Select the Best Stencil for SMT and Advanced IC Package Printing

Technical Library | 2003-05-05 07:36:58.0

The stencil selection process can be confusing, particularly when creating a stencil for a new application. This tutorial, which covers stencils for SMT and advanced IC packaging applications, offers guidelines to assist users in stencil selection and print optimization.

Cookson Electronics

Case Study on the Validation of SAC305 and SnCu Based Solders in SMT, Wave and Hand-soldering at the Contract Assembler Level

Technical Library | 2007-11-15 15:54:44.0

At the contractor level once a product is required to be soldered with lead-free solders all the processes must be assessed as to insure the same quality a customer has been accustomed to with a Sn63Pb37 process is achieved. The reflow, wave soldering and hand assembly processes must all be optimized carefully to insure good joint formation as per the appropriate class of electronics with new solder alloys and often new fluxes.

Kester

Screen Making for Printed Electronics- Specification and Tolerancing

Technical Library | 2018-03-28 14:54:36.0

Six decades of legacy experience makes the specification and production of screens and masks to produce repeatable precision results mostly an exercise in matching engineering needs with known ink and substrate performance to specify screen and stencil characteristics. New types of functional and electronic devices, flex circuits and medical sensors, industrial printing, ever finer circuit pitch, downstream additive manufacturing processes coupled with new substrates and inks that are not optimized for the rheological, mechanical and chemical characteristics for the screen printing process are becoming a customer driven norm. Many of these materials do not work within legacy screen making, curing or press set-up parameters. Many new materials and end uses require new screen specifications.This case study presents a DOE based method to pre-test new materials to categorize ink and substrate rheology, compatibility and printed feature requirement to allow more accurate screen recipes and on-press setting expectations before the project enters the production environment where time and materials are most costly and on-press adjustment methods may be constrained by locked, documented or regulatory processes, equipment limitations and employee experience.

Hazardous Print Consulting Inc

Method for the Manufacture of an Aluminum Substrate PCB and its Advantages

Technical Library | 2015-09-17 17:36:56.0

RoHS legislated restrictions on the materials used in electronics manufacture have imparted significant challenges on the electronics industry since their introduction in 2006. The greatest impacts have been felt by the mandated elimination of lead from electronic solder followed by the demand for the elimination of haloids from flame retardants used in traditional PCB laminates. In the years which have followed the electronics industry has been beset with a host of new challenges in its effort to comply. Failure mechanisms, both new and old, have surfaced which demand solution and the industry suppliers and manufacturing technologists have worked diligently to remedy those vexing faults through the development of a wide range of new materials and equipment for both board manufacture and assembly, along with modifications to the processes used in the manufacture and assembly of printed circuit boards.

Verdant Electronics

Laser-Based Methodology for the Application of Glass as a Dielectric and Cu Pattern Carrier for Printed Circuit Boards

Technical Library | 2018-11-07 20:48:01.0

Glass offers a number of advantages as a dielectric material, such as a low coefficient of thermal expansion (CTE), high dimensional stability, high thermal conductivity and suitable dielectric constant. These properties make glass an ideal candidate for, among other things, package substrate and high-frequency PCB applications. We report here a novel process for the production of printed circuit boards and integrated circuit packaging using glass as both a dielectric medium and a platform for wiring simultaneously.

Electro Scientific Industries

Fine Tuning The Stencil Manufacturing Process and Other Stencil Printing Experiments

Technical Library | 2013-11-21 12:01:11.0

Previous experimentation on a highly miniaturized and densely populated SMT assembly revealed the optimum stencil alloy and flux-repellent coating for its stencil printing process. Production implementation of the materials that were identified in the study resulted in approximately 5% print yield improvement across all assemblies throughout the operation, validating the results of the initial tests. A new set of studies was launched to focus on the materials themselves, with the purpose of optimizing their performance on the assembly line (...) Results of the prior tests are reviewed, and the new test vehicle, experimental setup and results are presented and discussed.

Shea Engineering Services

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

Board Design and Assembly Process Evaluation for 0201 Components on PCBs

Technical Library | 2023-05-02 19:06:43.0

As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.

Flextronics International

  1 2 Next

optimizing and the and printing and process searches for Companies, Equipment, Machines, Suppliers & Information

The Branford Group
The Branford Group

A global industrial auction and valuation business with extensive experience in SMT, PCB Assembly & Manufacturing, Test, Semiconductor and other Electronics Machinery & Equipment.

Manufacturer / Equipment Dealer / Broker / Auctions

896 Main Street
Branford, CT USA

Phone: 203-488-7020

Circuit Board, PCB Assembly & electronics manufacturing service provider

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
PCB Handling with CE

Component Placement 101 Training Course
Solder Paste Dispensing

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
best pcb reflow oven

Training online, at your facility, or at one of our worldwide training centers"
Hot selling SMT spare parts and professional SMT machine solutions

500+ original new CF081CR CN081CR FEEDER in stock