Technical Library: paste in hole (Page 1 of 4)

Made in Japan: Solder Paste Jet Dispensing Machine

Technical Library | 2024-03-19 07:58:40.0

Introduction of Solder Paste Jet Dispensing Machine Step into the future of manufacturing with the Solder Paste Jet Dispensing Machine, meticulously crafted in Japan under the esteemed I.C.T brand. This cutting-edge equipment represents the pinnacle of precision engineering, delivering unrivaled performance and reliability. Let's dive into its exceptional features and applications. Transmission Structure System of Solder Paste Jet Dispensing Machine At the heart of this Solder Paste Jet Dispensing Machine lies a meticulously designed transmission structure system. Powered by X Y linear motor drive control, it achieves unprecedented precision in positioning. With a reciprocating position accuracy of 3σ±5um and a dynamic position accuracy of 3σ±3um across the X, Y, and Z axes, it ensures flawless execution of tasks with minimal deviation. The load-type gantry structure further enhances stability and accuracy, guaranteeing consistent performance even during high-speed operations. Advanced Function Configuration Flexibility and customization are the hallmarks of the Solder Paste Jet Dispensing Machine. It features a customizable platform tailored to meet the specific needs of diverse applications, ensuring optimal performance and efficiency. Additionally, the machine boasts advanced functionalities such as automatic correction of substrate warp height and real-time penetration monitoring. Equipped with dual cameras, it provides precise feedback for adjustments during the filling process, ensuring unmatched precision and quality. Function configuration.jpg Vision Non-stop Experience uninterrupted precision with the Vision Non-stop functionality of this machine. Capable of detecting 100 chips per second, it automatically identifies position and height deviations, enabling real-time compensation for coating actions. Dual compensation for path and glue amount further optimizes efficiency, minimizing waste and maximizing productivity. With its ability to print solder paste dots as small as 110um, it's perfectly suited for high-precision applications in ICs, BGAs, and beyond. Versatility in Configuration Options and Applications Adaptability is key in modern manufacturing, and the Solder Paste Jet Dispensing Machine delivers on all fronts. Offering a range of configuration options, including different valves tailored to various material viscosities and fluidity, it ensures optimal performance across diverse production scenarios. From semiconductor packages to LED back-end Mini-LED production, its versatility knows no bounds, making it an indispensable asset in a wide range of industries. Explore the Future of Manufacturing with I.C.T Join the ranks of industry leaders embracing the future of manufacturing with I.C.T's Solder Paste Jet Dispensing Machine. With its unrivaled precision, speed, and reliability, it's set to revolutionize your production processes and propel your business to new heights of success. Don't just keep up with the competition--surpass it with I.C.T's cutting-edge solutions. Unlock the Potential of Precision Manufacturing Delve deeper into the transformative power of precision manufacturing and discover how the Solder Paste Jet Dispensing Machine can unlock new possibilities for your business. From reducing production costs to improving product quality, the benefits are endless. Partner with I.C.T today and embark on a journey towards manufacturing excellence. Conclusion In conclusion, our Solder Paste Jet Dispensing Machine embodies the fusion of Japanese precision and I.C.T reliability, offering unparalleled efficiency in solder paste dispensing. With its advanced features and customizable options, it caters to the diverse needs of modern manufacturing processes. Experience the pinnacle of dispensing technology with our Solder Paste Jet Dispensing Machine. Overseas Technical Support by I.C.T At I.C.T, our commitment to customer satisfaction extends beyond the initial purchase. We provide comprehensive overseas technical support, including machine installation, debugging, and customer training. Our dedicated team ensures that your production line runs smoothly from the first product off the line to the seamless delivery of the machine. Partner with I.C.T today and elevate your manufacturing precision with our Solder Paste Jet Dispensing Machine. Contact us now to learn more about our solutions and take your production processes to new heights of efficiency and reliability.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

SMT On-line 3D Solder Paste Inspection Machine - Precision in Production

Technical Library | 2023-09-15 10:06:49.0

Enhance your electronics manufacturing with our SMT On-line 3D Solder Paste Inspection Machine. Achieve unmatched precision and accuracy in solder paste inspection for optimal PCB assembly. Streamline your production process and minimize defects with cutting-edge 3D technology. Explore how this machine can revolutionize your soldering process and ensure top-quality electronics.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Wedge Bonding Tool Selection

Technical Library | 2019-05-23 10:30:22.0

Increasing I/O numbers, device complexity, and product miniaturization requires high precision bonding tools, and sophisticated equipment. Careful consideration should be given to wedge geometry while selecting the tool for a fine pitch wire bonding application. Wire bonding is a process that creates an electrical connection between a die and a substrate or lead typically using gold or aluminum wire. Wedge bonding is a specific type of wire bonding that uses a wedge shaped tool to create the welds. The design of the wedge tool has changed very little over the past decade. The wire is fed at an angle through the back of the wedge. This angle is typically 30 to 60 degrees and is application dependent. Some applications require a higher feed angle due to package clearance issues. Some deep access applications require a 90 degree feed angle. In this configuration, the wire is fed through a hole in the shank of the wedge tool. Wire feed is shown in Figure 1.

ACI Technologies, Inc.

Stencil Design For Mixed Technology Through-Hole / Smt Placement And Reflow

Technical Library | 2023-06-12 18:52:18.0

This paper will review stencil design requirements for printing solder paste around and in through-hole pads / openings. There is much interest in this procedure since full implementation allows the placement of both through-hole components as well as SMD's and the subsequent reflow of both simultaneously. This in turn eliminates the need to wave solder or hand solder through-hole components.

Photo Stencil LLC

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2021-09-29 13:35:21.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations. Selective soldering using dedicated plates with nozzles on the solder area is the preferred way to make these connections. All joints can be soldered in one dip resulting in short cycle times. Additional soldering on a small select nozzle can make the system even more flexible. The soldering can only be successful when there is enough thermal heat in the assembly before the solder touches the board. A forced convection preheat is a must for many applications to bring enough heat into the metal and board materials. The challenge in a dip soldering process is to get a sufficient hole fill without bridging and minimize the number of solder balls. A new cover was designed to improve the nitrogen environment. Reducing oxygen levels benefits the wetting, but increases the risk for solder balling. Previous investigations showed that solder balling can be minimized by selecting proper materials for solder resist and flux.

Vitronics Soltec

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2023-11-14 19:24:08.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations.

Vitronics Soltec

Pin in Paste Stencil Design for Notebook Mainboard

Technical Library | 2008-03-18 12:36:31.0

This paper examines the construction of a notebook mainboard with more than 2000 components and no wave soldering required. The board contains standard SMD, chipset BGAs, connectors, through hole components and odd forms placed using full automation and soldered after two reflow cycles under critical process parameters. However, state of the art technology does not help if the process parameters are not set carefully. Can all complex BGAs, THTs and even screws be soldered on a single stencil? What will help us overcome bridging, insufficient solder and thombstoning issues? This paper will demonstrate the placement of all odd shape components using pin-in-paste stencil design and full completion of the motherboard after two reflow cycles.

Vestel Electronic

Via Filling Applications in Practice

Technical Library | 2020-07-15 18:49:03.0

Via Filling • Through Hole Vias - IPC-4761 – Plugging – Filling – Filled & Capped • MicroviaFilling and Stacked Vias

Würth Elektronik GmbH & Co. KG

An investigation into low temperature tin-bismuth and tin-bismuth-silver lead-free alloy solder pastes for electronics manufacturing applications

Technical Library | 2013-01-24 19:16:35.0

The electronics industry has mainly adopted the higher melting point Sn3Ag0.5Cu solder alloys for lead-free reflow soldering applications. For applications where temperature sensitive components and boards are used this has created a need to develop low melting point lead-free alloy solder pastes. Tin-bismuth and tin-bismuth-silver containing alloys were used to address the temperature issue with development done on Sn58Bi, Sn57.6Bi0.4Ag, Sn57Bi1Ag lead-free solder alloy pastes. Investigations included paste printing studies, reflow and wetting analysis on different substrates and board surface finishes and head-in-pillow paste performance in addition to paste-in-hole reflow tests. Voiding was also investigated on tin-bismuth and tin-bismuth-silver versus Sn3Ag0.5Cu soldered QFN/MLF/BTC components. Mechanical bond strength testing was also done comparing Sn58Bi, Sn37Pb and Sn3Ag0.5Cu soldered components. The results of the work are reported.

Christopher Associates Inc.

Effective Methods to Get Volatile Compounds Out of Reflow Process

Technical Library | 2016-02-11 18:26:43.0

Although reflow ovens may not have been dramatically changed during the last decade the reflow process changes step by step. With the introduction of lead-free soldering not only operation temperatures increased, but also the chemistry of the solder paste was modified to meet the higher thermal requirements. Miniaturization is a second factor that impacts the reflow process. The density on the assembly is increasing where solder paste deposit volumes decreases due to smaller pad and component dimensions. Pick and place machines can handle more components and to meet this high through put some SMD lines are equipped with dual lane conveyors, doubling solder paste consumption. With the introduction of pin in paste to solder through hole components contamination of the oven increased due to dripping of the paste.

Vitronics Soltec

  1 2 3 4 Next

paste in hole searches for Companies, Equipment, Machines, Suppliers & Information