Technical Library: plated through hole (Page 1 of 6)

Solder Mask Dispensing For Electronics and Aerostructures

Technical Library | 2023-08-16 18:09:06.0

One of our customers involved with Electronics and Aerostructures requested a test to dispense Techspray Wondermask 2204 solder mask. The dispensing locations include large and small screw holes, single through-hole vias, and connector locations consisting of multiple through-hole vias. The process needed to run quickly and reliably.

GPD Global

PCB Fabrication Processes and Their Effects on Fine Copper Barrel Cracks

Technical Library | 2015-12-23 16:57:27.0

The onset of copper barrel cracks is typically induced by the presence of manufacturing defects. In the absence of discernible manufacturing defects, the causes of copper barrel cracks in printed circuit board (PCB) plated through holes is not well understood. Accordingly, there is a need to determine what affects the onset of barrel cracks and then control those causes to mitigate their initiation.The objective of this research is to conduct a design of experiment (DOE) to determine if there is a relationship between PCB fabrication processes and the prevalence of fine barrel cracks. The test vehicle used will be a 16-layer epoxy-based PCB that has two different sized plated through holes as well as buried vias.

Raytheon

Proof is in the PTH - Assuring Via Reliability from Chip Carriers to Thick Printed Wiring Boards

Technical Library | 2007-06-06 15:25:30.0

Though today's microvias and high aspect plated through holes (PTH's) look nothing like the earliest through holes of 40 years ago, the PTH in its various forms remains the “weak link” and most critical element of printed wiring boards and laminate chip carriers (...) The paper outlines an approach to evaluating PTH reliability and quality that involves characterizing PTH life across a range of temperatures to reveal intricacies not seen by testing at a single delta-T, and certainly difficult to predict by modeling alone.

i3 Electronics

Moisture Measurements in PCBs and Impact of Design on Desorption Behaviour

Technical Library | 2018-09-21 10:12:53.0

Moisture accumulates during storage and industry practice recommends specific levels of baking to avoid delamination. This paper will discuss the use of capacitance measurements to follow the absorption and desorption behaviour of moisture. The PCB design used in this work, focused on the issue of baking out moisture trapped between copper planes. The PCB was designed with different densities of plated through holes and drilled holes in external copper planes, with capacitance sensors located on the inner layers. For trapped volumes between copper planes, the distance between holes proved to be critical in affecting the desorption rate. For fully saturated PCBs, the desorption time at elevated temperatures was observed to be in the order of hundreds of hours. Finite difference diffusion modelling was carried out for moisture desorption behaviour for plated through holes and drilled holes in copper planes. A meshed copper plane was also modelled evaluating its effectiveness for assisting moisture removal and decreasing bake times. Results also showed, that in certain circumstances, regions of the PCB under copper planes initially increase in moisture during baking.

National Physical Laboratory

Advanced Cu Electroplating Process for Any Layer Via Fill Applications with Thin Surface Copper

Technical Library | 2019-06-26 23:21:49.0

Copper-filled micro-vias are a key technology in high density interconnect (HDI) designs that have enabled increasing miniaturization and densification of printed circuit boards for the next generation of electronic products. Compared with standard plated through holes (PTHs) copper filled vias provide greater design flexibility, improved signal performance, and can potentially help reduce layer count, thus reducing cost. Considering these advantages, there are strong incentives to optimize the via filling process. This paper presents an innovative DC acid copper via fill formulation, for VCP (Vertical Continues Plating) applications which rapidly fills vias while minimizing surface plating.

MacDermid Inc.

The Proximity of Microvias to PTHs And Its Impact On The Reliability

Technical Library | 2007-05-09 18:26:16.0

High Density Interconnect (HDI) technology is fast becoming the enabling technology for the next generation of small portable electronic communication devices. These methods employ many different dielectrics and via fabrication technologies. In this research, the effect of the proximity of microvias to Plated Through Holes (PTHs) and its effect on the reliability of the microvias was extensively evaluated. The reliability of microvia interconnect structures was evaluated using Liquid-To-Liquid Thermal Shock (LLTS) testing (-55oC to +125oC). Comprehensive failure analysis was performed on microvias fabricated using different via fabrication technologies.

Universal Instruments Corporation

PTH Core-to-Core Interconnect Using Sintered Conductive Pastes

Technical Library | 2013-03-07 18:25:36.0

The market for high-layer-count printed circuit boards (PCB) containing blind and buried vias was once relatively small, and focused on specialized applications in the military and high end computing. The demand for these types of PCBs today is being driven by an increasing number of commercial applications in the telecommunications and semiconductor test market segments. These applications typically require high-aspect-ratio plated-through-holes (PTHs) and blind and buried vias in order to meet the applications interconnect density requirements. Blind and buried vias and high aspect ratio PTHs continue to present manufacturing challenges and frequently are the limiting features to achieving high fabrication yield... First published in the 2012 IPC APEX EXPO technical conference proceedings

Ormet Circuits, Inc.

Via Fill and Through Hole Plating Process with Enhanced TH Microdistribution

Technical Library | 2019-07-17 17:56:34.0

The increased demand for electronic devices in recent years has led to an extensive research in the field to meet the requirements of the industry. Electrolytic copper has been an important technology in the fabrication of PCBs and semiconductors. Aqueous sulfuric acid baths are explored for filling or building up with copper structures like blind micro vias (BMV), trenches, through holes (TH), and pillar bumps. As circuit miniaturization continues, developing a process that simultaneously fills vias and plates TH with various sizes and aspect ratios, while minimizing the surface copper thickness is critical. Filling BMV and plating TH at the same time, presents great difficulties for the PCB manufactures. The conventional copper plating processes that provide good via fill and leveling of the deposit tend to worsen the throwing power (TP) of the electroplating bath. TP is defined as the ratio of the deposit copper thickness in the center of the through hole to its thickness at the surface. In this paper an optimization of recently developed innovative, one step acid copper plating technology for filling vias with a minimal surface thickness and plating through holes is presented.

MacDermid Inc.

Long Term Thermal Reliability of Printed Circuit Board Materials

Technical Library | 2016-09-15 17:10:40.0

This paper describes the purpose, methodology, and results to date of thermal endurance testing performed at the company. The intent of this thermal aging testing is to establish long term reliability data for printed wiring board (PWB) materials for use in applications that require 20+ years (100,000+ hours) of operational life under different thermal conditions. Underwriters Laboratory (UL) testing only addresses unclad laminate (resin and glass) and not a fabricated PWB that undergoes many processing steps, includes copper and plated through holes, and has a complex mechanical structure. UL testing is based on a 5000 hour expected operation life of the electronic product. Therefore, there is a need to determine the dielectric breakdown / degradation of the composite printed circuit board material and mechanical structure over time and temperature for mission critical applications.

Amphenol Printed Circuit Board Technology

A Life Prediction Model of Multilayered PTH Based on Fatigue Mechanism

Technical Library | 2019-12-26 19:13:52.0

Plated through hole (PTH) plays a critical role in printed circuit board (PCB) reliability. Thermal fatigue deformation of the PTH material is regarded as the primary factor affecting the lifetime of electrical devices. Numerous research efforts have focused on the failure mechanism model of PTH. However, most of the existing models were based on the one-dimensional structure hypothesis without taking the multilayered structure and external pad into consideration.In this paper, the constitutive relation of multilayered PTH is developed to establish the stress equation, and finite element analysis (FEA) is performed to locate the maximum stress and simulate the influence of the material properties. Finally, thermal cycle tests are conducted to verify the accuracy of the life prediction results. This model could be used in fatigue failure portable diagnosis and for life prediction of multilayered PCB.

Beihang University

  1 2 3 4 5 6 Next

plated through hole searches for Companies, Equipment, Machines, Suppliers & Information

pressure curing ovens

High Precision Fluid Dispensers
See Your 2024 IPC Certification Training Schedule for Eptac

World's Best Reflow Oven Customizable for Unique Applications
Global manufacturing solutions provider

Training online, at your facility, or at one of our worldwide training centers"
SMTAI 2024 - SMTA International

High Resolution Fast Speed Industrial Cameras.
PCB Handling Machine with CE

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
Fully Automatic BGA Rework Station

Original SMT Feeders and spares for Panasonic, Fuji , Yamaha, Juki , Samsung