Technical Library: screen printing in vias (Page 1 of 1)

Review of Interconnect Stress Testing Protocols and Their Effectiveness in Screening Microvias

Technical Library | 2016-11-30 15:53:15.0

The use of microvias in Printed Circuit Boards (PCBs) for military hardware is increasing as technology drives us toward smaller pitches and denser circuitry. Along with the changes in technology, the industry has changed and captive manufacturing lines are few and far between. As PCBs get more complicated, the testing we perform to verify the material was manufactured to our requirements before they are used in an assembly needs to be reviewed to ensure that it is sufficient for the technology and meets industry needs to better screen for long-term reliability. The Interconnect Stress Testing (IST) protocol currently used to identify manufacturing issues in plated through holes, blind, or buried vias are not necessarily sufficient to identify problems with microvias. There is a need to review the current IST protocol to determine if it is adequate for finding bad microvias or if there is a more reliable test that will screen out manufacturing inconsistencies. The objective of this research is to analyze a large population of PCB IST coupons to determine if there is a more effective IST test to find less reliable microvias in electrically passing PCB product and to screen for manufacturing deficiencies. The proposed IST test procedure will be supported with visual inspection of corresponding microvia cross sections and Printed Wiring Assembly (PWA) acceptance test results. The proposed screening will be shown to only slightly affect PCB yield while showing a large benefit to screening before PCBs are used in an assembly.

Raytheon

IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments

Technical Library | 2020-03-04 23:53:17.0

Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

SLAS Technology

Risk Mitigation in Hand Soldering

Technical Library | 2019-01-02 21:51:49.0

Failed solder joints remain a constant source of printed circuit board failure. Soldering is the bonding of metallic surfaces via an intermetallic compound (IMC). The interaction between thermal energy delivery, flux chemistry, and solder chemistry creates the solder bond or joint. Today, reliability relies on visual inspection; operator experience and skill, control of influencers e.g. tip geometry, tip temperature, and collection and analysis of process data. Each factor involved with the formation of the solder joint is an element of risk and can affect either throughput or repeatability. Mitigating this risk in hand soldering requires the identification of these factors and a means to address them.

Metcal

Advances in Conductive Inks across Multiple Applications and Deposition Platforms

Technical Library | 2012-12-27 14:35:29.0

Printed Electronics is generally defined as the patterning of electronic materials, in solution form, onto flexible substrates, omitting any use of the photolithography, etching, and plating steps commonly found within the Printed Circuit Board (PCB) industry. The origins of printed electronics go back to the 1960s, and close variants of several original applications and market segments remain active today. Through the 1980s and 1990s Printed Electronic applications based on Membrane Touch Switch and Electroluminescent lighting technologies became common, and the screen printed electronic materials used then have formed the building blocks for many of the current and emerging technologies and applications... First published in the 2012 IPC APEX EXPO technical conference proceedings.

DuPont

SMT Stencil, Surface Performance Returning to Basics in the SMT Screen Printing Process to Significantly Improve the Paste Deposition

Technical Library | 2018-03-15 07:23:35.0

The SMT assembly process is continuously challenged by the factors which enhance circuit board performance and limit productivity. The pick and place and reflow systems reflect these driven issues by adding more and more controls to their systems, but the fact is one of the age old processes continues to operate within the same rules since the dawn of the SMT assembly world: The SMT screen printing. (...)This paper showcases a new stencil process that was discovered by reverting to the basics:understanding the reason for each stencil material process, focusing on detailed finishes and a disciplined aperture design process, maintaining original designs, and making the correctly designed apertures to control the paste deposition. The test results drove us to focus the efforts on the aperture walls In this paper we will demonstrate with lab tests SMT process results howthe improved paste release results in improved SMT print process performance and its positive impact on SPI yields and EOL performance.

InterLatin

Developments in Electroless Copper Processes to Improve Performance in amSAP Mobile Applications

Technical Library | 2020-09-02 22:02:13.0

With the adoption of Wafer Level Packages (WLP) in the latest generation mobile handsets, the Printed Circuit Board (PCB) industry has also seen the initial steps of High Density Interconnect (HDI) products migrating away from the current subtractive processes towards a more technically adept technique, based on an advanced modified Semi Additive Process (amSAP). This pattern plate process enables line and space features in the region of 20um to be produced, in combination with fully filled, laser formed microvias. However, in order to achieve these process demands, a step change in the performance of the chemical processes used for metallization of the microvia is essential. In the electroless Copper process, the critical activator step often risks cross contamination by the preceding chemistries. Such events can lead to uncontrolled buildup of Palladium rich residues on the panel surface, which can subsequently inhibit etching and lead to short circuits between the final traces. In addition, with more demands being placed on the microvia, the need for a high uniformity Copper layer has become paramount, unfortunately, as microvia shape is often far from ideal, the deposition or "throw" characteristics of the Copper bath itself are also of critical importance. This "high throwing power" is influential elsewhere in the amSAP technique, as it leads to a thinner surface Copper layer, which aids the etching process and enables the ultra-fine features being demanded by today's high end PCB applications. This paper discusses the performance of an electroless Copper plating process that has been developed to satisfy the needs of challenging amSAP applications. Through the use of a radical predip chemistry, the formation, build up and deposition of uncontrolled Pd residues arising from activator contamination has been virtually eradicated. With the adoption of a high throwing power Copper bath, sub 30um features are enabled and microvia coverage is shown to be greatly improved, even in complex via shapes which would otherwise suffer from uneven coverage and risk premature failure in service. Through a mixture of development and production data, this paper aims to highlight the benefits and robust performance of the new electroless Copper process for amSAP applications

Atotech

Proof is in the PTH - Assuring Via Reliability from Chip Carriers to Thick Printed Wiring Boards

Technical Library | 2007-06-06 15:25:30.0

Though today's microvias and high aspect plated through holes (PTH's) look nothing like the earliest through holes of 40 years ago, the PTH in its various forms remains the “weak link” and most critical element of printed wiring boards and laminate chip carriers (...) The paper outlines an approach to evaluating PTH reliability and quality that involves characterizing PTH life across a range of temperatures to reveal intricacies not seen by testing at a single delta-T, and certainly difficult to predict by modeling alone.

i3 Electronics

  1  

screen printing in vias searches for Companies, Equipment, Machines, Suppliers & Information

2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications
SMT Machines

High Throughput Reflow Oven
convection smt reflow ovens

Best Reflow Oven