Technical Library: component space (Page 2 of 3)

Assembly and Rework of Lead Free Package on Package Technology

Technical Library | 2024-01-15 20:45:42.0

Miniaturization continues to be a driving force in both integrated circuit packaging and printed circuit board laminate technology. In addition to decreasing component pitch (lead to lead spacing), utilization of the vertical space by stacking packages has found wide acceptance by both designers and manufactures of electronics alike. Lead free Package on Package (PoP) technology represents one of the latest advancements in vertical electronics packaging integration and has become the preferred technology for mobile hand held electronics applications. TT Electronics in Perry, Ohio has developed the capability to assemble and rework numerous "state of the art" packaging technologies. This paper will focus on the essential engineering development activities performed to demonstrate TT Electronics' ability to both assemble and rework PoP components.

TT Electronics

Assembly and Rework of Lead Free Package on Package Technology

Technical Library | 2024-01-16 22:29:59.0

Miniaturization continues to be a driving force in both integrated circuit packaging and printed circuit board laminate technology. In addition to decreasing component pitch (lead to lead spacing), utilization of the vertical space by stacking packages has found wide acceptance by both designers and manufactures of electronics alike. Lead free Package on Package (PoP) technology represents one of the latest advancements in vertical electronics packaging integration and has become the preferred technology for mobile hand held electronics applications. TT Electronics in Perry, Ohio has developed the capability to assemble and rework numerous "state of the art" packaging technologies. This paper will focus on the essential engineering development activities performed to demonstrate TT Electronics' ability to both assemble and rework PoP components.

TT Electronics

Cracking Problems in Low-Voltage Chip Ceramic Capacitors

Technical Library | 2022-09-25 20:03:37.0

Cracking remains the major reason of failures in multilayer ceramic capacitors (MLCCs) used in space electronics. Due to a tight quality control of space-grade components, the probability that as manufactured capacitors have cracks is relatively low, and cracking is often occurs during assembly, handling and the following testing of the systems. Majority of capacitors with cracks are revealed during the integration and testing period, but although extremely rarely, defective parts remain undetected and result in failures during the mission. Manual soldering and rework that are often used during low volume production of circuit boards for space aggravate this situation. Although failures of MLCCs are often attributed to the post-manufacturing stresses, in many cases they are due to a combination of certain deviations in the manufacturing processes that result in hidden defects in the parts and excessive stresses during assembly and use. This report gives an overview of design, manufacturing and testing processes of MLCCs focusing on elements related to cracking problems. The existing and new screening and qualification procedures and techniques are briefly described and assessed by their effectiveness in revealing cracks. The capability of different test methods to simulate stresses resulting in cracking, mechanisms of failures in capacitors with cracks, and possible methods of selecting capacitors the most robust to manual soldering stresses are discussed.

NASA Office Of Safety And Mission Assurance

Beyond 0402M Placement: Process Considerations for 03015M Microchip Mounting

Technical Library | 2015-05-28 17:34:48.0

The printed circuit board assembly industry has long embraced the "Smaller, Lighter, Faster" mantra for electronic devices, especially in our ubiquitous mobile devices. As manufacturers increase smart phone functionality and capability, designers must adopt smaller components to facilitate high-density packaging. Measuring over 40% smaller than today's 0402M (0.4mmx0.2mm) microchip, the new 03015M (0.3mm×0.15mm) microchip epitomizes the bleeding-edge of surface mount component miniaturization. This presentation will explore board and component trends, and then delve into three critical areas for successful 03015M adoption: placement equipment, assembly materials, and process controls. Beyond machine requirements, the importance of taping specifications, component shape, solder fillet, spacing gap, and stencil design are explored. We will also examine how Adaptive Process Control can increase production yields and reduce defects by placing components to solder position rather than pad. Understanding the process considerations for 03015M component mounting today will help designers and manufacturers transition to successful placement tomorrow.

Panasonic Factory Solutions Company of America (PFSA)

RULES FOR WORKING WITH 0201s AND OTHER SMALL PARTS

Technical Library | 2023-05-02 18:50:24.0

Surface-mount PCB components are smaller than their lead-based counterparts and provide a radically higher component density. They are available in a variety of shapes and sizes designated by a series of standardized codes curated by the electronics industry. Of these PCB components, the 0201-sized are the smallest, measuring 0.024 x 0.012 in. (0.6 x 0.3 mm) – that's 70% smaller than the previous 0402 level! The 0201 components are designed to improve reliability in space-constrained applications such as portable electronics like smartphones, tablets, robotics and digital cameras, but require delicate handling during the assembly process. Given the miniaturized dimensions of an 0201 package, it is crucial that the mounting process abide by a series of guidelines regarding the design of the PCB mounting pads and solderable metallization, PCB circuit trace width, solder paste selection, package placement and overages, solder paste reflow, solder stencil screening, and final inspection. It's advisable that one review this information when procuring the services of a PCB assembler.

Advanced Assembly, LLC.

A Novel Solution for No-Clean Flux not Fully Dried under Component Terminations

Technical Library | 2017-08-17 12:28:30.0

At SMT assembly, flux outgassing/drying is difficult for devices with poor venting channel, and resulted in insufficiently dried/burnt-off flux residue for no-clean process. Examples including: Large low stand-off components such as QFN, LGA Components covered under electromagnetic shield which has either no or few venting holes Components assembled within cavity of board Any other devices with small open space around solder joints

Indium Corporation

Improving Density in Microwave Multilayer Printed Circuit Boards for Space Applications

Technical Library | 2013-11-27 16:54:01.0

The need in complexity for microwave space products such as active BFNs (Beam Forming Networks) is increasing, with a significantly growing number of amplitude / phase control points (number of beams * numbers of radiating elements). As a consequence, the RF component’s package topology is evolving (larger number of I/Os, interconnections densification ...) which directly affect the routing and architecture of the multilayer boards they are mounted on. It then becomes necessary to improve the density of these boards (...) This paper will present the work performed to achieve LCP-based high density multilayer structures, describing the different electrical and technological breadboards manufactured and tested and presenting the results obtained.

THALES

Evaluation of No-Clean Flux Residues Remaining After Secondary Process Operations

Technical Library | 2023-04-17 17:05:47.0

In an ideal world, manufacturing devices would work all of the time, however, every company receives customer returns for a variety of reasons. If these returned parts contributed to a fail, most companies will perform failure analysis (FA) on the returned parts to determine the root cause of the failure. Failure can occur for a multitude of reasons, for example: wear out, fatigue, design issues, manufacturing flaw or defect. This information is then used to improve the overall quality of the product and prevent reoccurrence. If no defect is found, it is possible that in fact the product has no defect. On the other hand, the defect could be elusive and the FA techniques insufficient to detect said deficiency. No-clean flux residues can cause intermittent or elusive, hard to find defects. In an attempt to understand the effects of no-clean flux residues from the secondary soldering and cleaning processes, a matrix of varying process and cleaning operation was investigated. Of special interest, traveling flux residues and entrapped residues were examined, as well as localized and batch cleaning processes. Various techniques were employed to test the remaining residues in order to assess their propensity to cause a latent failure. These techniques include Surface Insulation Resistance1 (SIR) testing at 40⁰C/90% RH, 5 VDC bias along with C32 testing and Ion Exchange Chromatography (IC). These techniques facilitate the assessment of the capillary effect the tight spacing these component structures have when flux residues are present. It is expected that dendritic shorting and measurable current leakage will occur, indicating a failing SIR test. However, since the residue resides under the discrete components, there will be no visual evidence of dendritic growth or metal migration.

Foresite Inc.

Deposition of Solder Paste into High Density Cavity Assemblies

Technical Library | 2018-02-28 22:28:30.0

Circuit functional density requirements continue to drive innovative approaches to high performance packaging. Some new approaches include; aggressive space reduction, embedded solutions, and those that offer some form of risk reduction and rework potential are now options that are being explored by customers. Requirements for assembly of these types of packages necessitate the deposition of solder paste and assembly of components into cavities of the substrates to gain z-axis density as well as area functional density. Advances in the fabrication of PWB’s with cavities using newly developed laser micro-fabrication processes along with increased circuit pitch density of 50 micron lines and spaces permit new applications for high performance electronic substrates. First published at SMTA Pan Pacific Symposium

Celestica Corporation

The Basics of Package/Device Cooling

Technical Library | 1999-05-06 11:42:16.0

The most reliable and well-designed electronic device can malfunction or fail if it overheats. Considering thermal issues early in the design process results in a thermally conscious system layout and minimizes costs through the use of passive cooling and off-the-shelf components. When thermal issues are left until completion of the design, the only remaining solution may be a costly custom heat sink that requires all the space available. Incorporating a heat sink or a fan into a product after it is fully developed can be expensive, and still may not provide sufficient cooling of the device.

Aavid Thermalloy, LLC


component space searches for Companies, Equipment, Machines, Suppliers & Information