Technical Library: dealing (Page 3 of 3)

Vapor Phase Technology and its Application

Technical Library | 2013-03-27 23:43:40.0

Vapor phase, once cast to the annals’ of history is making a comeback. Why? Reflow technology is well developed and has served the industry for many years, it is simple and it is consistent. All points are true – when dealing with the centre section of the bell curve. Today’s PCB manufacturers are faced with many designs which no longer fall into that polite category but rather test the process engineering groups with heavier and larger panels, large ground planes located in tricky places, component mass densities which are poorly distributed, ever changing Pb Free alloys and higher process temperatures. All the time the costs for the panels increase, availability of “process trial” boards diminishes and yields are expected to be extremely high with zero scrap rates. The final process in the assembly line has the capacity to secure all the value of the assembly or destroy it. If a panel is poorly soldered due to poor Oven setup or incorrect programming of the profile the recovery of the panel is at best expensive, at worst a loss. For these challenges people are turning to Vapor Phase.

A-Tek Systems Group LLC

101 EMI Shielding Tips and Tricks

Technical Library | 2020-07-02 13:16:32.0

Principle of shielding 1 The principle of shielding is creating a conductive layer completely surrounding the object you want to shield. This was invented by Michael Faraday and this system is known as a Faraday Cage. 2 Ideally, the shielding layer will be made up of conductive sheets or layers of metal that are connected by means of welding or soldering, without any interruptions. The shielding is perfect when there is no difference in conductivity between the used materials. When dealing with frequencies below 30 MHz, the metal thickness affects shielding effectiveness. We also offer a range of shielding methods for plastic enclosures. A complete absence of interruptions is not a realistic goal since the Faraday cage will have to be opened from time to time so electronics, equipment or people can be moved in or out. Openings are also needed for displays, ventilation, cooling, power supply, signals etc. 3 Shielding works in both directions, items inside the shielded room are shielded from outside influences. (Fig. 3.1)

Holland Shielding Systems BV

LEAD-FREE FLUX TECHNOLOGY AND INFLUENCE ON CLEANING

Technical Library | 2022-10-11 17:27:08.0

Lead-free flux technology for electronic industry is mainly driven by high soldering temperature, high alloy surface tension, miniaturization, air soldering due to low cost consideration, and environmental concern. Accordingly, the flux features desired included high thermal stability, high resistance against burn-off, high oxidation resistance, high oxygen barrier capability, low surface tension, high fluxing capacity, slow wetting, low moisture pickup, high hot viscosity, and halogen-free. For each of the features listed above, corresponding desired chemical structures can be deduced, and the impact of those structures on flux residue cleanability can be speculated. Overall, lead-free flux technology results in a greater difficulty in cleaning. Cleaner with a better matching solvency for the residue as well as a higher cleaning temperature or agitation are needed. Alkaline and polar cleaner are often needed to deal with the larger quantity of fluxing products. Reactive cleaner is also desired to address the side reaction products such as crosslinked residue.

Indium Corporation

High Throw Electroless Copper - Enabling new Opportunities for IC Substrates and HDI Manufacturing

Technical Library | 2017-04-20 13:51:14.0

The one constant in electronics manufacturing is change. Moore's Law, which successfully predicted a rate of change at which transistor counts doubled on Integrated Circuits (ICs) at lower cost for decades, is ceding to be an appropriate prediction tool. Increasing technical and economic requirements, deriving from the semiconductor environment, are cascaded down to the printed circuit and in particular to the IC substrate manufacturers. This is both a challenge and an opportunity for IC Substrate manufacturers, when dealing with the demands of the packaging market. (...)This paper introduces two new electroless copper baths developed for IC substrates manufacturing based on Semi Additive Process (SAP) technology (hereafter referred to as E'less Copper IC) and HDI production (hereafter referred to as E'less Copper HDI) and optimized for high throw into BMVs. An introduction to reliable throwing power measurement methods based on scanning electron microscope (SEM) is given, followed by a compilation and discussion of key performance criteria for each application, namely throwing power, copper adhesion on the substrate, dry film adhesion and reliability.

Atotech

Factors determine the price of temperature humidity test chamber

Technical Library | 2019-12-16 22:20:55.0

When we were children,our parents always warn us "Do comparison shopping before you buy",why they say like this?this is a very simple truth, for the first deal,we are always cautious, through continuous comparison in order to find out the best quality, service, after-sale and price. This apply to any industry,there are many manufacturers of environmental test equipment. When some customers inquire a temeprature humidity test chamber, they will find a very common problem. Why is the price of the same equipment quoted by the two manufacturers very different? 1, the chamber body process,which effects the exterior case quality,this price has a gap. 2, the components, esp.components of the refrigeration system, is the core value of the temperature humidity test chamber. 3, even if the body and refrigeration components are the same, some prices are different, that is the manufacturer technical level. 4, regional issues, Wuxi,Changzhou, Dongguan, these brands need to know more. 5. after-sales, a powerful manufacturer often with a sound after-sales service dept.. The above are both technical and service, as well as the delivery cost of goods to the local and overseas are different.

Symor Instrument Equipment Co.,Ltd

Causes and Costs of No Fault Found Events

Technical Library | 2016-04-14 13:49:44.0

A system level test, usually built-in test (BIT), determines that one or more subsystems are faulty. These subsystems sent to the depot or factory repair facility, called units under test (UUTs) often pass that test, an event we call No-Fault-Found (NFF). With more-and more electronics monitored by BIT, it is more likely that an intermittent glitch will trigger a call for a maintenance action resulting in NFF. NFFs are often confused with false alarm (FA), cannot duplicate (CNDs)or retest OK (RTOK) events. NFFs at the depot are caused by FAs, CNDs, RTOKs as well as a number of other complications. Attempting to repair NFF scan waste precious resources, compromise confidence in the product, create customer dissatisfaction, and the repair quality remains a mystery. The problem is compounded by previous work showing that most failure indications calling for repair action at the system level are invalid. NFFs can be caused by real failures or may be a result of system level false alarms. Understanding the cause of the problem may help us distinguish between units under test (UUTs) that we can repair and those that we cannot. In calculating the true cost of repair we must account for wasted effort in attempting to repair unrepairable UUTs.This paper will shed some light on this trade-off. Finally, we will explore approaches for dealing with the NFF issue in a cost effective manner.

A.T.E. Solutions, Inc.

Estimating Recycling Return of Integrated Circuits Using Computer Vision on Printed Circuit Boards

Technical Library | 2021-06-07 19:06:32.0

The technological growth of the last decades has brought many improvements in daily life, but also concerns on how to deal with electronic waste. Electrical and electronic equipment waste is the fastest-growing rate in the industrialized world. One of the elements of electronic equipment is the printed circuit board (PCB) and almost every electronic equipment has a PCB inside it. While waste PCB (WPCB) recycling may result in the recovery of potentially precious materials and the reuse of some components, it is a challenging task because its composition diversity requires a cautious pre-processing stage to achieve optimal recycling outcomes. Our research focused on proposing a method to evaluate the economic feasibility of recycling integrated circuits (ICs) from WPCB. The proposed method can help decide whether to dismantle a separate WPCB before the physical or mechanical recycling process and consists of estimating the IC area from a WPCB, calculating the IC's weight using surface density, and estimating how much metal can be recovered by recycling those ICs. To estimate the IC area in a WPCB, we used a state-of-the-art object detection deep learning model (YOLO) and the PCB DSLR image dataset to detect the WPCB's ICs. Regarding IC detection, the best result was obtained with the partitioned analysis of each image through a sliding window, thus creating new images of smaller dimensions, reaching 86.77% mAP. As a final result, we estimate that the Deep PCB Dataset has a total of 1079.18 g of ICs, from which it would be possible to recover at least 909.94 g of metals and silicon elements from all WPCBs' ICs. Since there is a high variability in the compositions of WPCBs, it is possible to calculate the gross income for each WPCB and use it as a decision criterion for the type of pre-processing.

University of Pernambuco

Previous 1 2 3  

dealing searches for Companies, Equipment, Machines, Suppliers & Information