Technical Library: lead-free alloys (Page 3 of 6)

Photonic Flash Soldering on Flex Foils for Flexible Electronic Systems

Technical Library | 2021-11-03 16:49:59.0

Ultrathin bare die chips were soldered using a novel soldering technology. Using homogeneous flash light generated by high-power xenon flash lamp the dummy components and the bare die NFC chips were successfully soldered to copper tracks on polyimide (PI) and polyethylene terephthalate (PET) flex foils by using industry standard Sn-Ag-Cu lead free alloys. Due to the selectivity of light absorption, a limited temperature increase was observed in the PET substrates while the chip and copper tracks were rapidly heated to a temperatures above the solder melting temperature. This allowed to successfully soldered components onto the delicate polyethylene foil substrates using lead-free alloys with liquidus temperatures above 200 °C. It was shown that by preheating components above the decomposition temperature of solder paste flux with a set of short low intensity pulses the processing window could be significantly extended compared to the process with direct illumination of chips with high intensity flash pulse. Furthermore, it was demonstrated that with localized tuning of pulse intensity components having different heat capacity could be simultaneously soldered using a single flash pulse.

NovaCentrix

Horizontal Convection Reflow Technology Defined

Technical Library | 2009-12-23 16:55:08.0

Leading up to the development of lead-free soldering alloys, Horizontal Convection* was developed for the reflow process. Getting the correct temperature profile, with the narrow process window in lead-free applications, is now more important than ever. In each chamber or “zone”, air is circulated toward one side of the oven above the PCB and toward the opposite side of the oven below the PCB, forming a “cyclone” around the board. The forced air circulation results in a uniform temperature profile along the entire circuit board assembly. This technology is ideal for the precise profiles needed for lead free soldering.

DDM Novastar Inc

ACHIEVING EXCELLENT VERTICAL HOLE FILL ON THERMALLY CHALLENGING BOARDS USING SELECTIVE SOLDERING

Technical Library | 2023-11-14 19:52:11.0

The continuous drive in the Electronics industry to build new and innovative products has caused competitive design companies to develop assemblies with consolidated PCB designs, decreased physical sizes, and increased performance characteristics. As a result of these new designs, manufacturers of electronics are forced to contend with many challenges. One of the most significant challenges being the processing of thru-hole components on high thermal mass PCBs having the potential to exceed 20 layers in thicknesses and have copper mass contents of over 40oz. High thermal mass PCBs, coupled with the use of mixed technologies, decreased component spacing, and the change from Tin Lead Solder to Lead Free Alloys has lead many manufacturing facilities to purchase advanced soldering equipment to process challenging assemblies with a high degree of repeatability.

Plexus Corporation

Effect Of Silver In Common Lead-Free Alloys

Technical Library | 2021-09-08 14:03:55.0

There is need in the industry to understand the effects of silver presence in solders from various applications perspective. This article will attempt to present a review of the key published results on the silver containing alloys along with results of our internal studies on wave soldering, surface mount and BGA/CSP applications. Advantages and disadvantages of silver at different levels will be discussed. Specifically this report will focus on the effect of silver on process conditions, drop shock resistance, solder joint survivability in high strain rate situations, thermal fatigue resistance, Cu dissolution and effects of silver in combination with other alloy additives. Specific application problems demanding high silver level and other requiring silver level to the minimum will be discussed.

Cookson Electronics

Preparation, Manufacturing Lead-Free Soldering Alloy

Technical Library | 2014-11-28 15:55:13.0

A soldering alloy composition Sn40-Bi60 has been manufactured by quenching method to achieve the both cast and wire shape. Differential scanning calorimetric (DSC) was done to study the melting behavior for a large portion of the alloy melts sharply at a approximately 136 C0 ,the melting point of Sn-Bi. X-Ray diffraction and optical microscopy were used to analyzed its microstructure characterization. The hardness of the alloys has been tested and find at a value 2 HRB as ductile form.

University of Baghdad

Position Accuracy Machines for Selective Soldering Fine Pitch Components

Technical Library | 2015-02-27 17:06:01.0

The drive towards fine pitch technology also affects the soldering processes. Selective soldering is a reliable soldering process for THT (through hole) connectors and offers a wide process window for designers. THT connectors can be soldered on the top and bottom side of boards, board in board, PCBs to metal shields or housing out of plastic or aluminum are today's state of the art. The materials that are used to make the solder connections require higher temperatures. Due to the introduction of lead-free alloys, the boards need more heat to get the barrels filled with solder. This not only affects the properties of the flux and components, but the operation temperatures of solder machines become higher (...)First the impact of temperature will be discussed for the separate process steps and for machine tooling. In the experimental part measurements are done to verify the accuracy that can be achieved using today's selective soldering machines. Dedicated tooling is designed to achieve special requirements with respect to component position accuracy.

Vitronics Soltec

Controlling Copper Build Up in Automatic Soldering Equipment Using Lead-Free Solder

Technical Library | 2008-11-20 00:46:10.0

The Sn/Ag/Cu family of alloys is the leading candidate for a lead-free alternative. The first part of this study was to determine if there is any significant difference between Sn/Ag/Cu alloys when used in automatic soldering equipment in terms of copper build-up in the system. The study compared two Sn/Ag/Cu alloys to determine if at processing temperatures one alloy would absorb less copper than the other alloy.

AIM Solder

Latent heat induced deformation of PCB substrate: Measurement and simulation

Technical Library | 2022-12-05 16:28:06.0

The work evaluates the impact of latent heat (LH) absorbed or released by a solder alloy during melting or solidification, respectively, on changes of dimensions of materials surrounding of the solder alloy. Our sample comprises a small printed circuit board (PCB) with a blind via filled with lead-free alloy SAC305. Differential scanning calorimetry (DSC) was employed to obtain the amount of LH per mass and a thermomechanical analyzer was used to measure the thermally induced deformation. A plateau during melting and a peak during solidification were detected during the course of dimension change. The peak height reached 1.6 μm in the place of the heat source and 0.3 μm in the distance of 3 mm from the source. The data measured during solidification was compared to a numerical model based on the finite element method. An excellent quantitative agreement was observed which confirms that the transient expansion of PCB during cooling can be explained by the release of LH from the solder alloy during solidification. Our results have important implications for the design of PCB assemblies where the contribution of recalescence to thermal stress can lead to solder joint failure.

Czech Technical University in Prague

OOOH Colors, It Must Be Lead Free

Technical Library | 2014-06-23 14:50:52.0

It was unusual to see chip terminations change colors when tin lead solders were used but with the introduction of lead free reflow soldering and the corresponding increases in reflow temperatures terminations are now changing colors. Two conditions are present when reflow temperatures are increased for lead free solder alloys that leads to discoloration. Reflow temperatures are above the melting point of tin (Sn MP is 232oC). Air temperatures commonly used in forced convection reflow systems are high enough to both melt the tin plating on the termination allowing it to be pulled into the solder joint due to solder joint liquid solder surface tension leaving behind the exposed nickel barrier. Now those metal oxide colors will be visible due to high air temperatures during reflow.

Johanson Dielectrics, Inc.

Soldering of SMD Film Capacitors in Practical Lead Free Processes

Technical Library | 2009-06-02 23:53:18.0

Today the lead free soldering process is a must in commercial electronics and it is also coming more and more important in automative and industrial electronics sectors in the near future. The most common choices for lead free solders are different Tin-Solder-Copper (SAC) alloys. Processes using SAC solders cause extra stress, because of increased process temperatures, especially to the plastic materials.

KEMET Electronics Corporation


lead-free alloys searches for Companies, Equipment, Machines, Suppliers & Information

Equipment Auction - Eagle Comtronics: Low-Use Electronic Assembly & Machining Facility 2019 Europlacer iineo + Placement Machine  Test & Inspection: Agilent | Tektronix | Mantis Machine Shop: Haas VF3 | Haas SL-20 | Mult. Lathes

Component Placement 101 Training Course
Fluid Dispensing, Staking, TIM, Solder Paste

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Global manufacturing solutions provider

World's Best Reflow Oven Customizable for Unique Applications