Technical Library: working time (Page 3 of 4)

Handling of Highly-Moisture Sensitive Components - An Analysis of Low-Humidity Containment and Baking Schedules

Technical Library | 2022-09-12 14:07:47.0

Unique component handling issues can arise when an assembly factory uses highly-moisture sensitive surface mount devices (SMDs). This work describes how the distribution of moisture within the molded plastic body of a SMD is an important variable for survivability. JEDEC/IPC [1] moisture level rated packages classified as Levels 4-5a are shown to require additional handling constraints beyond the typical out-of-bag exposure time tracking. Nitrogen or desiccated cabinet containment is shown as a safe and effective means for long-term storage provided the effects of prior out-of-bag exposure conditions are taken into account. Moisture diffusion analyses coupled with experimental verification studies show that time in storage is as important a variable as floor-life exposure for highly-moisture sensitive devices. Improvements in floor-life survivability can be obtained by a handling procedure that includes cyclic storage in low humidity containment. SMDs that have exceeded their floor-life limits are analyzed for proper baking schedules. Optimized baking schedules can be adopted depending on a knowledge of the exposure conditions and the moisture sensitivity level of the device.

Alcatel-Lucent

Embracing a New Paradigm: Electronic Work Instructions (EWI)

Technical Library | 2019-03-15 16:26:50.0

While there have been quite dramatic and evident improvements in almost every facet of manufacturing over the last several decades owing to the advent and mass adoption of computer automation and networking, there is one aspect of production that remains stubbornly unaffected. Massive databases track everything from orders, to inventory, to personnel. CAD systems allow for interactive and dynamic 3D rendering and testing, digital troubleshooting, and simulation and analysis prior to mass production. Yet, with all of this computational power and all of this networking capability, one element of production has remained thoroughly and firmly planted in the past. Nearly all manufacturing or assembly procedures are created, deployed, and stored using methodologies derived from a set of assumptions that ceased to be relevant fifty years ago. This set of assumptions, referred to below as the “Paper Paradigm” has been, and continues as the dominant paradigm for manufacturing procedures to this day. It is time for a new paradigm, one that accounts for the vastly different technological landscape of this era, one that provides a simple, efficient interface, deep traceability, and dynamic response to rapidly changing economic forces.This paper seeks to present an alternative. Instead of enhancing and improving on systems that became irrelevant with the invention of a database, instead of propping up an outdated, outmoded and inefficient system with incremental improvements; rewrite the paradigm. Change the underlying assertions to more accurately reflect our current technological capability. Instead of relying on evolutionary improvements, it is time for a revolution in manufacturing instructions.

ScanCAD International, Inc.

3D Printing Electronic Components And Circuits With Conductive Thermoplastic Filament

Technical Library | 2023-06-02 14:13:02.0

This work examines the use of dual-material fused filament fabrication for 3D printing electronic componentsand circuits with conductive thermoplastic filaments. The resistivity of traces printed fromconductive thermoplastic filaments made with carbon-black, graphene, and copper as conductive fillerswas found to be 12, 0.78, and 0.014 ohm cm, respectively, enabling the creation of resistors with valuesspanning 3 orders of magnitude. The carbon black and graphene filaments were brittle and fracturedeasily, but the copper-based filament could be bent at least 500 times with little change in its resistance.Impedance measurements made on the thermoplastic filaments demonstrate that the copper-based filamenthad an impedance similar to a copper PCB trace at frequencies greater than 1 MHz. Dual material3D printing was used to fabricate a variety of inductors and capacitors with properties that could bepredictably tuned by modifying either the geometry of the components, or the materials used to fabricatethe components. These resistors, capacitors, and inductors were combined to create a fully 3Dprinted high-pass filter with properties comparable to its conventional counterparts. The relatively lowimpedance of the copper-based filament enabled its use for 3D printing of a receiver coil for wirelesspower transfer. We also demonstrate the ability to embed and connect surface mounted components in3D printed objects with a low-cost ($1000 in parts), open source dual-material 3D printer. This work thusdemonstrates the potential for FFF 3D printing to create complex, three-dimensional circuits composedof either embedded or fully-printed electronic components.

A.T.E. Solutions, Inc.

Implementing Robust Bead Probe Test Processes into Standard Pb-Free Assembly

Technical Library | 2015-08-20 15:18:38.0

Increasing system integration and component densities continue to significantly reduce the opportunity to access nets using standard test points. Over time the size of test points has been drastically reduced (as small as 0.5 mm in diameter) but current product design parameters have created space and access limitations that remove even the option for these test points. Many high speed signal lines have now been restricted to inner layers only. Where surface traces are still available for access, bead probe technology is an option that reduces test point space requirements as well as their effects on high speed nets and distributes mechanical loading away from BGA footprints enabling test access and reducing the risk of mechanical defects associated with the concentration of ICT spring forces under BGA devices. Building on Celestica's previous work characterizing contact resistance associated with Pr-free compatible surface finishes and process chemistry; this paper will describe experimentation to define a robust process window for the implementation of bead probe and similar bump technology that is compatible with standard Pb-free assembly processes. Test Vehicle assembly process, test methods and "Design of Experiments" will be described. Bead Probe formation and deformation under use will also be presented along with selected results.

Celestica Corporation

Streamlining PCB Assembly and Test NPI with Shared Component Libraries

Technical Library | 2016-04-08 01:19:52.0

PCB assembly designs become more complex year-on-year, yet early-stage form/fit compliance verification of all designed-in components to the intended manufacturing processes remains a challenge. So long as librarians at the design and manufacturing levels continue to maintain their own local standards for component representation, there is no common representation in the design-to-manufacturing phase of the product lifecycle that can provide the basis for transfer of manufacturing process rules to the design level. A comprehensive methodology must be implemented for all component types, not just the minority which happen to conform to formal packaging standards, to successfully left-shift assembly and test DFM analysis to the design level and thus compress NPI cycle times.(...)This paper will demonstrate the technological components of the working solution: the logic for deriving repeatable and standardized package and pin classifications from a common source of component physical-model content, the method for associating DFA and DFT rules to those classifications, and the transfer of those rules to separate DFM and NPI analysis tools elsewhere in the design-through-manufacturing chain resulting in a consistent DFM process across multiple design and manufacturing organizations.

Mentor Graphics

Screen Making for Printed Electronics- Specification and Tolerancing

Technical Library | 2018-03-28 14:54:36.0

Six decades of legacy experience makes the specification and production of screens and masks to produce repeatable precision results mostly an exercise in matching engineering needs with known ink and substrate performance to specify screen and stencil characteristics. New types of functional and electronic devices, flex circuits and medical sensors, industrial printing, ever finer circuit pitch, downstream additive manufacturing processes coupled with new substrates and inks that are not optimized for the rheological, mechanical and chemical characteristics for the screen printing process are becoming a customer driven norm. Many of these materials do not work within legacy screen making, curing or press set-up parameters. Many new materials and end uses require new screen specifications.This case study presents a DOE based method to pre-test new materials to categorize ink and substrate rheology, compatibility and printed feature requirement to allow more accurate screen recipes and on-press setting expectations before the project enters the production environment where time and materials are most costly and on-press adjustment methods may be constrained by locked, documented or regulatory processes, equipment limitations and employee experience.

Hazardous Print Consulting Inc

Notices in the use of temperature and humidity Test Chamber

Technical Library | 2019-05-06 23:04:05.0

The temperature and humidity test chamber simulate the temperature and humidity, so there are a lot of things customers shoud notice in the process of use, although there is detailed instruction when purchasing the equipment. But some users just know how the device works and start using it. This is very easy to cause problems in the use of the equipment, so Symor intends to describe the safety details during the use of temperature and humidity chamber. 1. Before the test, determine if the sample contains flammable and explosive substances to avoid combustion or explosion during the test. Of course, also make sure there is no flammable and explosive material around the test equipment, otherwise it may cause fire and other accidents. 2, Do not open the chamber door to operate during the experiment, or the gas in the studio may cause the operator to burn and so on. 3. At the end of the test or at the time of regular cleaning of the test chamber, power off the equipment to avoid electrocution accidents. Also, when cutting off the equipment power, pull the power cord to pull out the plug, otherwise it may lead to a rupture of the power cord and so on. You can contact manufacturers if there are some places you donnot understand, do not dismantle and repair the temperature and humidity test chamber without authorization, otherwise it may lead to more serious problems.

Symor Instrument Equipment Co.,Ltd

Surfaces of mixed formulation solder alloys at melting

Technical Library | 2022-10-31 17:25:37.0

Mixed formulation solder alloys refer to specific combinations of Sn-37Pb and SAC305 (96.5Sn–3.0Ag–0.5Cu). They present a solution for the interim period before Pb-free electronic assemblies are universally accepted. In this work, the surfaces of mixed formulation solder alloys have been studied by in situ and real-time Auger electron spectroscopy as a function of temperature as the alloys are raised above the melting point. With increasing temperature, there is a growing fraction of low-level, bulk contaminants that segregate to the alloy surfaces. In particular, the amount of surface C is nearly _50–60 at. % C at the melting point. The segregating impurities inhibit solderability by providing a blocking layer to reaction between the alloy and substrate. A similar phenomenon has been observed over a wide range of (SAC and non-SAC) alloys synthesized by a variety of techniques. That solder alloy surfaces at melting have a radically different composition from the bulk uncovers a key variable that helps to explain the wide variability in contact angles reported in previous studies of wetting and adhesion. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3584821]

Auburn University

How to extend the lifespan of climatic test chamber?

Technical Library | 2019-05-06 23:13:09.0

Temperature and humidity test chamber has brought a lot of help to many industrial enterprises, but while it brings convenience to us, we should also take good care of them, otherwise they may be brought into the end-of-life phase ahead of time. The way of maintenance is also very simple. After daily use, the equipment is cleaned regularly, but the cleaning of the test chamber is also very skillful. If the operation is wrong, it may also lead to equipment failure. Let‘s learn how to extend the service life of the temperature and humidity test box together. 1, Pls clean the working room with water after each use, then dry the interior with dry cotton cloth. 2, Pls regularly remove dust from the evaporator inside the equipment, and periodically wipe the equipment to ensure clean and tidy. 3, When doing the test, the sample should be uniformly placed onto sample shelves,and the vent should not be blocked to prevent the influence of the test 4, It is necessary to pay attention to the cleaning of water tanks in peacetime, after the test or when the equipment is not intended to be used for a long time, all the water in the tank should be discharged, otherwise it will lead to the formation of scale inside the tank. The water used in the temperature and humidity test chamber must be pure or distilled water, or long-term use may result in a humidifier or internal pipe clogging. Above are the usual use notice of temperature and humidity test chamber, if customer adhere to the above several points,it is really able to prolong the service life of the equipment.

Symor Instrument Equipment Co.,Ltd

Serious to make dry oven

Technical Library | 2019-11-13 02:09:44.0

Dry oven is a must instrument almost for every laboratory in different industries,with nearly 20 years efforts and innovation,Climatest now masters core technique of dry oven manufacturing,no matter on temperature uniformity or temperature stability.Behind the quality is 15 years of consistent persistence,strong belief in excellence; from design to R & D to production, from promotion to sales to installation; every step should reach excellence,What you see, you use our products, you choose, you feel that we do our best,this is our faith. Dry Ovens are used to dry or temper electronic components,material tests,torrefaction, wax-melting ,high temperature aging ,preheating and sterilization in industrial and mining enterprises, laboratories and scientific research institutes. .Exterior chamber is made by reinforced steel with painting; working chamber made by anti-corrosion stainless steel SUS#304 .Intelligent PID control, LED controller with over-temperature alarm,timing range within 0~9999min .Hot air circulation system composed of Germany imported low-noisy air blower and optimal air duct which ensure uniform temperature distribution .Double layers of glass door, large transparent window to observe specimen .Forced air convection Climatest manufactures desktop and floor-standing models with RT+10°C-200°C,250°C,300°C,350°C,400°C temperature range,and customized as per special requirement,if you wanna know more details about our dry oven,please visit our product page:https://climatechambers.com/industrial-dry-oven/200-degree-c-hot-air-oven.html

Symor Instrument Equipment Co.,Ltd


working time searches for Companies, Equipment, Machines, Suppliers & Information