Technical Library: laser (Page 4 of 4)

Low Surface Energy Coatings Rewrites the Area Ratio Rules

Technical Library | 2013-06-20 14:33:12.0

With today's consumer technologies driving the need for denser and more compact devices, the assembly process for surface mounted devices has becoming increasingly more difficult. With the mixture of components requiring a broader range of print deposition volume, various techniques are in use in an attempt to ensure consistent and appropriate paste volume is achieved. Some of these techniques include step etching a stencil locally on a targeted device, promoting electroformed smooth wall nickel stencils, through to laser cutting newer grade stencil materials. This paper focuses on the relevant attributes that affect the properties of solder paste release and introduces the effects of surface free energy with respect to key elements that make up the stencil printing process.

Assembly Process Technologies LLC

Deposition of Solder Paste into High Density Cavity Assemblies

Technical Library | 2018-02-28 22:28:30.0

Circuit functional density requirements continue to drive innovative approaches to high performance packaging. Some new approaches include; aggressive space reduction, embedded solutions, and those that offer some form of risk reduction and rework potential are now options that are being explored by customers. Requirements for assembly of these types of packages necessitate the deposition of solder paste and assembly of components into cavities of the substrates to gain z-axis density as well as area functional density. Advances in the fabrication of PWB’s with cavities using newly developed laser micro-fabrication processes along with increased circuit pitch density of 50 micron lines and spaces permit new applications for high performance electronic substrates. First published at SMTA Pan Pacific Symposium

Celestica Corporation

Laser-Based Methodology for the Application of Glass as a Dielectric and Cu Pattern Carrier for Printed Circuit Boards

Technical Library | 2018-11-07 20:48:01.0

Glass offers a number of advantages as a dielectric material, such as a low coefficient of thermal expansion (CTE), high dimensional stability, high thermal conductivity and suitable dielectric constant. These properties make glass an ideal candidate for, among other things, package substrate and high-frequency PCB applications. We report here a novel process for the production of printed circuit boards and integrated circuit packaging using glass as both a dielectric medium and a platform for wiring simultaneously.

Electro Scientific Industries

Stencil Options for Printing Solder Paste for .3 Mm CSP's and 01005 Chip Components

Technical Library | 2023-07-25 16:42:54.0

Printing solder paste for very small components like .3mm pitch CSP's and 01005 Chip Components is a challenge for the printing process when other larger components like RF shields, SMT Connectors, and large chip or resistor components are also present on the PCB. The smaller components require a stencil thickness typically of 3 mils (75u) to keep the Area Ratio greater than .55 for good paste transfer efficiency. The larger components require either more solder paste height or volume, thus a stencil thickness in the range of 4 to 5 mils (100 to 125u). This paper will explore two stencil solutions to solve this dilemma. The first is a "Two Print Stencil" option where the small component apertures are printed with a thin stencil and the larger components with a thicker stencil with relief pockets for the first print. Successful prints with Keep-Outs as small as 15 mils (400u) will be demonstrated. The second solution is a stencil technology that will provide good paste transfer efficiency for Area Ratio's below .5. In this case a thicker stencil can be utilized to print all components. Paste transfer results for several different stencil types including Laser-Cut Fine Grain stainless steel, Laser-Cut stainless steel with and w/o PTFE Teflon coating, AMTX E-FAB with and w/o PTFE coating for Area Ratios ranging from .4 up to .69.

Photo Stencil LLC

New High-Speed 3D Surface Imaging Technology in Electronics Manufacturing Applications

Technical Library | 2020-03-26 14:55:29.0

This paper introduces line confocal technology that was recently developed to characterize 3D features of various surface and material types at sub-micron resolution. It enables automatic microtopographic 3D imaging of challenging objects that are difficult or impossible to scan with traditional methods, such as machine vision or laser triangulation.Examples of well-suited applications for line confocal technology include glossy, mirror-like, transparent and multi-layered surfaces made of metals (connector pins, conductor traces, solder bumps etc.), polymers (adhesives, enclosures, coatings, etc.), ceramics (components, substrates, etc.) and glass (display panels, etc.). Line confocal sensors operate at high speed and can be used to scan fast-moving surfaces in real-time as well as stationary product samples in the laboratory. The operational principle of the line confocal method and its strengths and limitations are discussed.Three metrology applications for the technology in electronics product manufacturing are examined: 1. 3D imaging of etched PCBs for micro-etched copper surface roughness and cross-sectional profile and width of etched traces/pads. 2. Thickness, width and surface roughness measurement of conductive ink features and substrates in printed electronics applications. 3. 3D imaging of adhesive dots and lines for shape, dimensions and volume in PCB and product assembly applications.

FocalSpec, Inc.

Effect of Nano-Coated Stencil on 01005 Printing

Technical Library | 2021-11-17 18:53:50.0

The demand for product miniaturization, especially in the handheld device area, continues to challenge the board assembly industry. The desire to incorporate more functionality while making the product smaller continues to push board design to its limit. It is not uncommon to find boards with castle-like components right next to miniature components. This type of board poses a special challenge to the board assemblers as it requires a wide range of paste volume to satisfy both small and large components. One way to address the printing challenge is to use creative stencil design to meet the solder paste requirement for both large and small components. ... The most important attribute of a stencil is its release characteristic. In other words, how well the paste releases from the aperture. The paste release, in turn, depends on the surface characteristics of the aperture wall and stencil foil. The recent introduction of new technology, nano-coating for both stencil and squeegee blades, has drawn the attention of many researchers. As the name implies, nano-coated stencils and blades are made by a conventional method such as laser-cut or electroformed then coated with nano-functional material to alter the surface characteristics. This study will evaluate nano-coated stencils for passive component printing, including 01005.

Speedline Technologies, Inc.

Developments in Electroless Copper Processes to Improve Performance in amSAP Mobile Applications

Technical Library | 2020-09-02 22:02:13.0

With the adoption of Wafer Level Packages (WLP) in the latest generation mobile handsets, the Printed Circuit Board (PCB) industry has also seen the initial steps of High Density Interconnect (HDI) products migrating away from the current subtractive processes towards a more technically adept technique, based on an advanced modified Semi Additive Process (amSAP). This pattern plate process enables line and space features in the region of 20um to be produced, in combination with fully filled, laser formed microvias. However, in order to achieve these process demands, a step change in the performance of the chemical processes used for metallization of the microvia is essential. In the electroless Copper process, the critical activator step often risks cross contamination by the preceding chemistries. Such events can lead to uncontrolled buildup of Palladium rich residues on the panel surface, which can subsequently inhibit etching and lead to short circuits between the final traces. In addition, with more demands being placed on the microvia, the need for a high uniformity Copper layer has become paramount, unfortunately, as microvia shape is often far from ideal, the deposition or "throw" characteristics of the Copper bath itself are also of critical importance. This "high throwing power" is influential elsewhere in the amSAP technique, as it leads to a thinner surface Copper layer, which aids the etching process and enables the ultra-fine features being demanded by today's high end PCB applications. This paper discusses the performance of an electroless Copper plating process that has been developed to satisfy the needs of challenging amSAP applications. Through the use of a radical predip chemistry, the formation, build up and deposition of uncontrolled Pd residues arising from activator contamination has been virtually eradicated. With the adoption of a high throwing power Copper bath, sub 30um features are enabled and microvia coverage is shown to be greatly improved, even in complex via shapes which would otherwise suffer from uneven coverage and risk premature failure in service. Through a mixture of development and production data, this paper aims to highlight the benefits and robust performance of the new electroless Copper process for amSAP applications

Atotech

Fully automatic online shoe sole and upper spraying robot

Technical Library | 2019-05-23 21:56:56.0

Automatic on-line shoe sole spraying system: automatic shoe sole spraying system, simple and convenient operation, using 3D vision positioning system. Automatic recognition and automatic generation of spraying trajectory. Robot non-contact spraying gun is used to complete the process of shoe sole spraying with maturity, stability, high speed and high precision along the predetermined trajectory. The automatic generation of spraying trajectory is the realization of shoe sole spraying technology. Shoe sole spraying characteristics: 1.Positioning System: 3D Visual Positioning 2.Components: Intelligent Robot, Laser Scanner, Industrial Computer, Gum Spraying System, Conveyor Belt, Electrical Control System, etc. 3.Spraying time: slightly different according to shoe size and spraying time Fully automatic sole spraying advantages: 1. Simple application: suitable for soles of different specifications, models and sizes 2. Faster speed: 6-8 seconds to complete sole scanning and spraying, superior to similar products at home and abroad. 3. Quality stability: gum spraying trajectory is scheduled, gum dosage is fixed, gum spraying quality is greatly improved. 4. High cost performance: the same performance, the price is only 1/3 of the same type of equipment of European brand. 5. Reduce wear and tear: glue is fully utilized and not wasted, reducing human contact with glue. Intelligent operation advantage manual only need general operation can be automated workshop, mechanical arm automatic spraying glue, accurate spraying, reduce glue waste. Environmental protection effect of long-term close contact with glue seriously affects human health and mechanical work, glue does not directly contact, do not harm the human body. Fully automatic spraying, shoe sole adhesion process for automatic spraying machine, will not cause great challenges! With the deepening of personalized shoemaking, higher requirements have been put forward for the spraying technology in shoemaking process. The method of creating spraying trajectory must be adapted to shoes of different sizes and styles. The automatic generation of spraying trajectory is one of the key technologies to realize the automation of shoe sole spraying process. The method of off-line programming and real-time generation of spraying trajectory for robots based on the three-dimensional CAD model of sole and the data of sole. A new method of generating spray trajectory by scanning the sole of shoe upper with linear structured light sensor is presented. The feasibility of the method is verified by industrial robots. Aiming at the need of generating shoe sole spray rubber trajectory based on line structured light, the format standard of IGES file of three-dimensional model of shoe sole was tested. The shoe sole contour line and the shoe sole surface were extracted, and then the offset curve of the shoe sole contour line on the shoe sole surface was calculated to obtain the spray rubber trajectory. Three-dimensional profilometer is to use structured light to obtain sole information, effectively improve the automatic shoemaking spraying process, which will help to improve the efficiency of shoemaking, improve the quality of footwear products, and promote the development of personalized shoemaking.

YUSH Electronic Technology Co.,Ltd

Previous 1 2 3 4  

laser searches for Companies, Equipment, Machines, Suppliers & Information

Qinyi Electronics Co.,Ltd
Qinyi Electronics Co.,Ltd

Focusing on the SMT field for more than 15 years, QYSMT has been committed to meeting the needs of customers and partners. Our mission is to provide the best solutions while helping to reduce costs and increase efficiency.

Manufacturer / Equipment Dealer / Broker / Auctions

2nd floor, West side, Building 12, Hengmingzhu Industrial Park, 32 Xiangxing Road, Shajing Tongfu Industrial Zone, Baoan District
Shenzhen, 30 China

Phone: QYSMT / MOREL USA CONTACT – SUSANTA TRIPATHY.: 1-912-373-4005 / China Contact: 86-075521635007

One stop service for all SMT and PCB needs

High Precision Fluid Dispensers
Pillarhouse USA for Selective Soldering Needs

High Throughput Reflow Oven
Electronics Equipment Consignment

World's Best Reflow Oven Customizable for Unique Applications


Training online, at your facility, or at one of our worldwide training centers"