Technical Library: .pad (Page 5 of 9)

Via In Pad - Conductive Fill or Non-Conductive Fill?

Technical Library | 2020-07-15 18:29:34.0

In the early 2000s the first fine-pitch ball grid array devices became popular with designers looking to pack as much horsepower into as small a space as possible. "Smaller is better" became the rule and with that the mechanical drilling world became severely impacted by available drill bit sizes, aspect ratios, and plating methodologies. First of all, the diameter of the drill needed to be in the 0.006" or smaller range due to the reduction of pad size and spacing pitch. Secondly, the aspect ratio (depth to diameter) became limited by drill flute length, positional accuracy, rigidity of the tools (to prevent breakage), and the throwing power of acid copper plating systems. And lastly, the plating needed to close up the hole as much as possible, which led to problems with voiding, incomplete fill, and gas/solution entrapment.

Advanced Circuits

Bare PCB inspection for Track cut, Track Short and Pad Damage using simple Image Processing Operations

Technical Library | 2021-05-06 13:48:05.0

In this paper most commonly occurring Bare PCB defects such as Track Cut, Track short and Pad Damages are detected by Image processing techniques. Reference PCB without having any defects is compared with test PCB having defects to identify the defects and x-y coordinates of the center of the defects along with radii are obtained using Difference of Gaussian method and location of the individual type of defects are marked either by similar color or different colors. Result Analysis includes time taken for the inspection of a single defect, multiple similar defects, and multiple different defects. Time taken is ranging from 1.674 to 1.714 seconds if the individual type of defects are marked by different colors and 0.670 to 0.709 seconds if all the identified defects are marked by the same colors.

Vidya Vikas Institute Of Engineering And Technology

Facedown Low-Inductance Solder Pad and Via Schemes

Technical Library | 2008-09-04 17:57:24.0

In the quest for lower ESL devices, having the ESL reduced in the package is only half of the battle; connecting that device to the circuit determines how much of that low ESL appears to the circuit. For this low ESL part type, it would be a shame to take a part of 200 pH and add 2000 pH to its ESL because of via patterns on the PCB.

KEMET Electronics Corporation

Challenges on ENEPIG Finished PCBs: Gold Ball Bonding and Pad Metal Lift

Technical Library | 2017-09-07 13:56:11.0

As a surface finish for PCBs, Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) was selected over Electroless Nickel/Immersion Gold (ENIG) for CMOS image sensor applications with both surface mount technology (SMT) and gold ball bonding processes in mind based on the research available on-line. Challenges in the wire bonding process on ENEPIG with regards to bondability and other plating related issues are summarized.

Teledyne DALSA

Solving the ENIG Black Pad Problem: An ITRI Report on Round 2

Technical Library | 2013-01-17 15:37:21.0

A problem exists with electroless nickel / immersion gold (ENIG) surface finish on some pads, on some boards, that causes the solder joint to separate from the nickel surface, causing an open. The solder has wet and dissolved the gold. A weak tin to nickel intermetallic bond initially occurs, but the intermetallic bond cracks and separates when put under stress. Since the electroless nickel / immersion gold finish performs satisfactory in most applications, there had to be some area within the current chemistry process window that was satisfactory. The problem has been described as a 'BGA Black Pad Problem' or by HP as an 'Interfacial Fracture of BGA Packages…'[1]. A 24 variable experiment using three different chemistries was conducted during the ITRI (Interconnect Technology Research Institute) ENIG Project, Round 1, to investigate what process parameters of the chemical matrix were potentially satisfactory to use and which process parameters of the chemical matrix need to be avoided. The ITRI ENIG Project has completed Round 1 of testing and is now in the process of Round 2 TV (Test Vehicle) build.

Celestica Corporation

Reliability Screening of Lower Melting Point Pb-Free Alloys Containing Bi

Technical Library | 2015-07-01 16:51:43.0

Aerospace and military companies continue to exercise RoHS exemptions and to intensively research the long term attachment reliability of RoHS compliant solders. Their products require higher vibration, drop/shock performance, and combined-environment reliability than the conventional SAC305 alloy provides. The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. One possible route to improvement of the mechanical and thermo-mechanical properties of solder joints is the use of Pb-free solders with lower process temperatures. Lower temperatures help reduce the possibility of damaging the boards and components, and also may allow for the use of lower Tg board materials which are less prone to pad cratering defects. There are several Sn-Ag-Bi and Sn-Ag-Cu-Bi alloys which melt about 10°C lower than SAC305. The bismuth in these solder compositions not only reduces the melting temperature, but also improves thermo-mechanical behavior. An additional benefit of using Bi-containing solder alloys is the possibility to reduce the propensity to whisker growth

Honeywell International

Packaging Technology and Design Challenge for Fine Pitch Micro-Bump Cu-Pillar and BOT (Direct Bond on Substrate-Trace) Using TCNCP

Technical Library | 2015-12-02 18:32:50.0

(Thermal Compression with Non-Conductive Paste Underfill) Method.The companies writing this paper have jointly developed Copper (Cu) Pillar micro-bump and TCNCP(Thermal Compression with Non-Conductive Paste) technology over the last two+ years. The Cu Pillar micro-bump and TCNCP is one of the platform technologies, which is essentially required for 2.5D/3D chip stacking as well as cost effective SFF (small form factor) package enablement.Although the baseline packaging process methodology for a normal pad pitch (i.e. inline 50μm) within smaller chip size (i.e. 100 mm2) has been established and are in use for HVM production, there are several challenges to be addressed for further development for commercialization of finer bump pitch with larger die (i.e. ≤50μm tri-tier bond pad with the die larger than 400mm2).This paper will address the key challenges of each field, such as the Cu trace design on a substrate for robust micro-joint reliability, TCNCP technology, and substrate technology (i.e. structure, surface finish). Technical recommendations based on the lessons learned from a series of process experimentation will be provided, as well. Finally, this technology has been used for the successful launching of the company FPGA products with SFF packaging technology.

Altera Corporation

The Evolution of Surface Finishes in Mobile Phone Applications

Technical Library | 2017-02-28 12:39:50.0

During the last 5 years mobile phones and other portable consumer electronics have been extremely popular and spread all over the world in different climate zones in very high volumes. At the same time the mobile phone terminal for many people has become a necessity that is brought with them in any activity they practice. These changes in user behavior have heavily changed the impact on handheld terminals from moisture, sweat, corrosive atmospheres and mechanical drop. As a result of this the requirement to solder joint reliability, corrosion stability and wear resistance are heavily increasing to keep a high reliability of the terminal.Immersion Ni/Au has been the overall dominant surface finish on Printed Wiring Boards (PWB's) for the last 10 years, but a paradigm shift to avoid use of this thin and porous surface finish is ongoing nowadays because it can’t address these challenges in a satisfactory way.In today's handheld terminals, Organic Solder Preservative (OSP) has replaced Immersion Ni/Au on solder pads. Carbon surface finish for Key- and spring contact-pads, combined with the right concept design can make use of Immersion Ni/Au unnecessary in the near future. The result will be higher reliability with less expensive and simpler processes.This paper will discuss the various considerations for choice of surface finish and results from the feasibility studies performed.

Nokia Corporation

Fill the Void IV: Elimination of Inter-Via Voiding

Technical Library | 2019-10-10 00:26:28.0

Voids are a plague to our electronics and must be eliminated! Over the last few years we have studied voiding in solder joints and published three technical papers on methods to "Fill the Void." This paper is part four of this series. The focus of this work is to mitigate voids for via in pad circuit board designs. Via holes in Quad Flat No-Lead (QFN) thermal pads create voiding issues. Gasses can come out of via holes and rise into the solder joint creating voids. Solder can also flow down into the via holes creating gaps in the solder joint. One method of preventing this is via plugging. Via holes can be plugged, capped, or left open. These via plugging options were compared and contrasted to each other with respect to voiding. Another method of minimizing voiding is through solder paste stencil design. Solder paste can be printed around the via holes with gas escape routes. This prevents gasses from via holes from being trapped in the solder joint. Several stencil designs were tested and voiding performance compared and contrasted. In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of via hole plugging and stencil design are given. The aim of this paper is to help the reader to "Fill the Void."

FCT ASSEMBLY, INC.

Head-in-Pillow BGA Defects

Technical Library | 2009-11-05 11:17:32.0

Head-in-pillow (HiP), also known as ball-and-socket, is a solder joint defect where the solder paste deposit wets the pad, but does not fully wet the ball. This results in a solder joint with enough of a connection to have electrical integrity, but lacking sufficient mechanical strength. Due to the lack of solder joint strength, these components may fail with very little mechanical or thermal stress. This potentially costly defect is not usually detected in functional testing, and only shows up as a failure in the field after the assembly has been exposed to some physical or thermal stress.

AIM Solder


.pad searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
PCB Handling with CE

Component Placement 101 Training Course
Fluid Dispensing, Staking, TIM, Solder Paste

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
High Throughput Reflow Oven

World's Best Reflow Oven Customizable for Unique Applications