Technical Library: fine pitch components (Page 5 of 6)

3D Assembly Process a Look at Today and Tomorrow

Technical Library | 2016-04-21 14:10:55.0

The world of electronics continues to increase functional densities on products. One of the ways to increase density of a product is to utilize more of the 3 dimensional spaces available. Traditional printed circuit boards utilize the x/y plane and many miniaturization techniques apply to the x/y space savings, such as smaller components, finer pitches, and closer component to component distances.This paper will explore the evolution of 3D assembly techniques, starting from flexible circuit technology, cavity assembly, embedded technology, 3 dimensional surface mount assembly, etc.

Flex (Flextronics International)

An Investigation into the Use of Nano-Coated Stencils to Improve Solder Paste Printing with Small Stencil Aperture Area Ratios

Technical Library | 2017-09-28 16:36:33.0

These nano-coatings also refine the solder paste brick shape giving improved print definition. These two benefits combine to help the solder paste printing process produce an adequate amount of solder paste in the correct position on the circuit board pads. Today, stencil aperture area ratios from 0.66 down to 0.40 are commonly used and make paste printing a challenge. This paper presents data on small area ratio printing for component designs including 01005 Imperial (0402 metric) and smaller 03015 metric and 0201 metric chip components and 0.3 mm and 0.4 mm pitch micro BGAs.

FCT ASSEMBLY, INC.

Stencil Print solutions for Advance Packaging Applications

Technical Library | 2023-07-25 16:25:56.0

This paper address two significant applications of stencils in advance packaging field: 1. Ultra-Thin stencils for miniature component (0201m) assembly; 2. Deep Cavity stencils for embedded (open cavity) packaging. As the world of electronics continues to evolve with focus on smaller, lighter, faster, and feature-enhanced high- performing electronic products, so are the requirement for complex stencils to assemble such components. These stencil thicknesses start from less than 25um with apertures as small as 60um (or less). Step stencils are used when varying stencil thicknesses are required to print into cavities or on elevated surfaces or to provide relief for certain features on a board. In the early days of SMT assembly, step stencils were used to reduce the stencil thickness for 25 mil pitch leaded device apertures. Thick metal stencils that have both relief-etch pockets and reservoir step pockets are very useful for paste reservoir printing. Electroform Step-Up Stencils for ceramic BGA's and RF Shields are a good solution to achieve additional solder paste height on the pads of these components as well as providing exceptional paste transfer for smaller components like uBGAs and 0201s. As the components are getting smaller, for example 0201m, or as the available real estate for component placement on a board is getting smaller – finer is the aperture size and the pitch on the stencils. Aggressive distances from step wall to aperture are also required. Ultra-thin stencils with thicknesses in the order of 15um-40um with steps of 15um are used to obtain desired print volumes. Stencils with thickness to this order can be potential tools even to print for RDLs in the package.

Photo Stencil LLC

Assembly and Rework of Lead Free Package on Package Technology

Technical Library | 2024-01-15 20:45:42.0

Miniaturization continues to be a driving force in both integrated circuit packaging and printed circuit board laminate technology. In addition to decreasing component pitch (lead to lead spacing), utilization of the vertical space by stacking packages has found wide acceptance by both designers and manufactures of electronics alike. Lead free Package on Package (PoP) technology represents one of the latest advancements in vertical electronics packaging integration and has become the preferred technology for mobile hand held electronics applications. TT Electronics in Perry, Ohio has developed the capability to assemble and rework numerous "state of the art" packaging technologies. This paper will focus on the essential engineering development activities performed to demonstrate TT Electronics' ability to both assemble and rework PoP components.

TT Electronics

Assembly and Rework of Lead Free Package on Package Technology

Technical Library | 2024-01-16 22:29:59.0

Miniaturization continues to be a driving force in both integrated circuit packaging and printed circuit board laminate technology. In addition to decreasing component pitch (lead to lead spacing), utilization of the vertical space by stacking packages has found wide acceptance by both designers and manufactures of electronics alike. Lead free Package on Package (PoP) technology represents one of the latest advancements in vertical electronics packaging integration and has become the preferred technology for mobile hand held electronics applications. TT Electronics in Perry, Ohio has developed the capability to assemble and rework numerous "state of the art" packaging technologies. This paper will focus on the essential engineering development activities performed to demonstrate TT Electronics' ability to both assemble and rework PoP components.

TT Electronics

Deposition of Solder Paste into High Density Cavity Assemblies

Technical Library | 2018-02-28 22:28:30.0

Circuit functional density requirements continue to drive innovative approaches to high performance packaging. Some new approaches include; aggressive space reduction, embedded solutions, and those that offer some form of risk reduction and rework potential are now options that are being explored by customers. Requirements for assembly of these types of packages necessitate the deposition of solder paste and assembly of components into cavities of the substrates to gain z-axis density as well as area functional density. Advances in the fabrication of PWB’s with cavities using newly developed laser micro-fabrication processes along with increased circuit pitch density of 50 micron lines and spaces permit new applications for high performance electronic substrates. First published at SMTA Pan Pacific Symposium

Celestica Corporation

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2023-11-14 19:24:08.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations.

Vitronics Soltec

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

Stencil Printing Process Tools for Miniaturisation and High Yield Processing

Technical Library | 2023-06-12 19:00:21.0

The SMT print process is now very mature and well understood. However as consumers continually push for new electronic products, with increased functionality and smaller form factor, the boundaries of the whole assembly process are continually being challenged. Miniaturisation raises a number of issues for the stencil printing process. How small can we print? What are the tightest pitches? Can we print small deposits next too large for high mix technology assemblies? How closely can we place components for high density products? ...And then on top of this, how can we satisfy some of the cost pressures through the whole supply chain and improve yield in the production process! Today we are operating close to the limits of the stencil printing process. The area ratio rule (the relationship between stencil aperture opening and aperture surface area) fundamentally dictates what can and cannot be achieved in a print process. For next generation components and assembly processes these established rules need to be broken! New stencil printing techniques are becoming available which address some of these challenges. Active squeegees have been shown to push area ratio limits to new boundaries, permitting printing for next generation 0.3CSP technology. Results also indicate there are potential yield benefits for today's leading edge components as well. Stencil coatings are also showing promise. In tests performed to date it is becoming apparent that certain coatings can provide higher yield processing by extending the number of prints that can be performed in-between stencil cleans during a print process. Preliminary test results relating to the stencil coating technology and how they impact miniaturisation and high yield processing will be presented.

ASM Assembly Systems (DEK)

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2021-09-29 13:35:21.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations. Selective soldering using dedicated plates with nozzles on the solder area is the preferred way to make these connections. All joints can be soldered in one dip resulting in short cycle times. Additional soldering on a small select nozzle can make the system even more flexible. The soldering can only be successful when there is enough thermal heat in the assembly before the solder touches the board. A forced convection preheat is a must for many applications to bring enough heat into the metal and board materials. The challenge in a dip soldering process is to get a sufficient hole fill without bridging and minimize the number of solder balls. A new cover was designed to improve the nitrogen environment. Reducing oxygen levels benefits the wetting, but increases the risk for solder balling. Previous investigations showed that solder balling can be minimized by selecting proper materials for solder resist and flux.

Vitronics Soltec

Previous 1 2 3 4 5 6  

fine pitch components searches for Companies, Equipment, Machines, Suppliers & Information