Technical Library: 0201 and test (Page 6 of 9)

Whisker Formation Induced by Component and Assembly Ionic Contamination

Technical Library | 2023-02-13 18:56:42.0

This paper describes the results of an intensive whisker formation study on Pb-free assemblies with different levels of cleanliness. Thirteen types of as-received surface-mount and pin-through-hole components were cleaned and intentionally contaminated with solutions containing chloride, sulfate, bromide, and nitrate. Then the parts were assembled on double-sided boards that were also cleaned or intentionally contaminated with three fluxes having different halide contents. The assemblies were subjected to high-temperature/high-humidity testing (85_C/85% RH). Periodic examination found that contamination triggered whisker formation on both exposed tin and solder fillets. Whisker occurrence and parameters depending on the type and level of contamination are discussed. Cross-sections were used to assess the metallurgical aspects of whisker formation and the microstructural changes occurring during corrosion.

Celestica Corporation

Streamlining PCB Assembly and Test NPI with Shared Component Libraries

Technical Library | 2016-04-08 01:19:52.0

PCB assembly designs become more complex year-on-year, yet early-stage form/fit compliance verification of all designed-in components to the intended manufacturing processes remains a challenge. So long as librarians at the design and manufacturing levels continue to maintain their own local standards for component representation, there is no common representation in the design-to-manufacturing phase of the product lifecycle that can provide the basis for transfer of manufacturing process rules to the design level. A comprehensive methodology must be implemented for all component types, not just the minority which happen to conform to formal packaging standards, to successfully left-shift assembly and test DFM analysis to the design level and thus compress NPI cycle times.(...)This paper will demonstrate the technological components of the working solution: the logic for deriving repeatable and standardized package and pin classifications from a common source of component physical-model content, the method for associating DFA and DFT rules to those classifications, and the transfer of those rules to separate DFM and NPI analysis tools elsewhere in the design-through-manufacturing chain resulting in a consistent DFM process across multiple design and manufacturing organizations.

Mentor Graphics

Stencil Printing Process Tools for Miniaturisation and High Yield Processing

Technical Library | 2023-06-12 19:00:21.0

The SMT print process is now very mature and well understood. However as consumers continually push for new electronic products, with increased functionality and smaller form factor, the boundaries of the whole assembly process are continually being challenged. Miniaturisation raises a number of issues for the stencil printing process. How small can we print? What are the tightest pitches? Can we print small deposits next too large for high mix technology assemblies? How closely can we place components for high density products? ...And then on top of this, how can we satisfy some of the cost pressures through the whole supply chain and improve yield in the production process! Today we are operating close to the limits of the stencil printing process. The area ratio rule (the relationship between stencil aperture opening and aperture surface area) fundamentally dictates what can and cannot be achieved in a print process. For next generation components and assembly processes these established rules need to be broken! New stencil printing techniques are becoming available which address some of these challenges. Active squeegees have been shown to push area ratio limits to new boundaries, permitting printing for next generation 0.3CSP technology. Results also indicate there are potential yield benefits for today's leading edge components as well. Stencil coatings are also showing promise. In tests performed to date it is becoming apparent that certain coatings can provide higher yield processing by extending the number of prints that can be performed in-between stencil cleans during a print process. Preliminary test results relating to the stencil coating technology and how they impact miniaturisation and high yield processing will be presented.

ASM Assembly Systems (DEK)

A Designed Experiment for the Influence of Copper Foils on Impedance, DC Line Resistance and Insertion Loss

Technical Library | 2013-03-28 16:18:22.0

For the last couple of years, the main concerns regarding the electrical performance of blank PCB boards were impedance and ohmic resistance. Just recently, the need to reduce insertion loss came up in discussions with blank board customers (...) The paper describes the test vehicle and the testing methodology and discusses in detail the electrical performance characteristics. The influence of the independent variables on the performance characteristics is presented. Finally the thermal reliability of the boards built applying different copper foils and oxide replacements was investigated.

Multek Inc.

Fracture Toughness Analysis of Epoxy-Recycled Rubber-Based Composite Reinforced with Graphene Nanoplatelets for Structural Applications in Automotive and Aeronautics

Technical Library | 2021-02-25 14:19:00.0

This study proposes a new design of lightweight and cost-e#14;cient composite materials for the aeronautic industry utilizing recycled fresh scrap rubber, epoxy resin, and graphene nanoplatelets (GnPs). After manufacturing the composites, their bending strength and fracture characteristics were investigated by three-point bending (3PB) tests. Halpin–Tsai homogenization adapted to composites containing GnPs was used to estimate the moduli of the composites, and satisfactory agreement with the 3PB test results was observed.

Université Paris-Saclay

Screen Making for Printed Electronics- Specification and Tolerancing

Technical Library | 2018-03-28 14:54:36.0

Six decades of legacy experience makes the specification and production of screens and masks to produce repeatable precision results mostly an exercise in matching engineering needs with known ink and substrate performance to specify screen and stencil characteristics. New types of functional and electronic devices, flex circuits and medical sensors, industrial printing, ever finer circuit pitch, downstream additive manufacturing processes coupled with new substrates and inks that are not optimized for the rheological, mechanical and chemical characteristics for the screen printing process are becoming a customer driven norm. Many of these materials do not work within legacy screen making, curing or press set-up parameters. Many new materials and end uses require new screen specifications.This case study presents a DOE based method to pre-test new materials to categorize ink and substrate rheology, compatibility and printed feature requirement to allow more accurate screen recipes and on-press setting expectations before the project enters the production environment where time and materials are most costly and on-press adjustment methods may be constrained by locked, documented or regulatory processes, equipment limitations and employee experience.

Hazardous Print Consulting Inc

Issues and Challenges of Testing Modern Low Voltage Devices with Conventional In-Circuit Testers

Technical Library | 2012-12-14 14:25:37.0

The popularity of low voltage technologies has grown significantly over the last decade as semiconductor device manufacturers have moved to satisfy market demands for more powerful products, smaller packaging, and longer battery life. By shrinking the size of the features they etch into semiconductor dice, IC manufacturers achieve lower costs, while improving speed and building in more functionality. However, this move toward smaller features has lead to lower breakdown voltages and increased opportunities for component overstress and false failures during in-circuit test.

Teradyne

Characterize and Understand Functional Performance Of Cleaning QFN Packages on PCB Assemblies

Technical Library | 2022-12-19 18:59:51.0

Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.

iNEMI (International Electronics Manufacturing Initiative)

Reliability and Failure Mechanisms of Laminate Substrates in a Pb-free World

Technical Library | 2009-04-30 18:06:24.0

This presentation surveys the most significant via and via-related laminate failure mechanisms from past to present using data from current induced thermal cycling (CITC) testing, failure analysis, and other sources. The relative life and failure modes of thru vias, buried vias, and microvias (stacked vs. non-stacked) are compared, along with the affect of structure, materials, and peak temperatures on the above. The origin of via-induced laminate failures such as "eyebrow cracks" and Pb free related internal delamination is also explored.

i3 Electronics

Techniques for Selective Soldering High Thermal Mass and Fine-Pitch Components

Technical Library | 2022-08-08 15:06:06.0

Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.

Hentec Industries, Inc. (RPS Automation)


0201 and test searches for Companies, Equipment, Machines, Suppliers & Information