Technical Library: soldering pull test (Page 9 of 13)

Effects Of Storage Environments On The Solderability Of Nickel Palladium- Gold Finish With Pb-Based And Pb- Free Solders

Technical Library | 2022-03-02 21:26:51.0

The solderability of a nickel-palladium-gold (Ni-Pd-Au) finish on a Cu substrate was evaluated for the Pb-free solder, 95.5Sn-3.9Ag-0.6 Cu (wt.%, abbreviated Sn-Ag-Cu) and the eutectic 63Sn-37 Pb (Sn-Pb) alloy. The solder temperature was 245ºC. The flux was a rosin-based mildly activated (RMA) solution. The Ni-Pd-Au finish was tested in the as-fabricated condition as well as after exposure to one of the following accelerated storage (shelf life) regiments: (1) 33.6, 67.2, or 336 hours in the Battelle Class 2 flowing gas environment or (2) 5, 16, or 24 hours of steam aging (88ºC, 90%RH).

Sandia National Laboratories

Techniques for Selective Soldering High Thermal Mass and Fine-Pitch Components

Technical Library | 2022-08-08 15:06:06.0

Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.

Hentec Industries, Inc. (RPS Automation)

Using Rheology Measurement As A Potentially Predictive Tool For Solder Paste Transfer Efficiency And Print Volume Consistency

Technical Library | 2020-07-02 13:29:37.0

Industry standards such as J-STD-005 and JIS Z 3284-1994 call for the use of viscosity measurement(s) as a quality assurance test method for solder paste. Almost all solder paste produced and sold use a viscosity range at a single shear rate as part of the pass-fail criteria for shipment and customer acceptance respectively. As had been reported many times, an estimated 80% of the defects associated with the surface mount technology process involve defects created during the printing process. Viscosity at a single shear rate could predict a fatal flaw in the printability of a solder paste sample. However, false positive single shear rate viscosity readings are not unknown.

Alpha Assembly Solutions

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

Transient Solder Separation of BGA Solder Joint During Second Reflow Cycle

Technical Library | 2019-05-15 22:26:02.0

As the demand for higher routing density and transfer speed increases, Via-In-Pad Plated Over (VIPPO) has become more common on high-end telecommunications products. The interactions of VIPPO with other features used on a PCB such as the traditional dog-bone pad design could induce solder joints to separate during the second and thereafter reflows. The failure has been successfully reproduced, and the typical failure signature of a joint separation has been summarized.To better understand the solder separation mechanism, this study focuses on designing a test vehicle to address the following three perspectives: PCB material properties, specifically the Z-direction or out-of-plane Coefficient of Thermal Expansion (CTE); PCB thickness and back drill depth; and quantification of the driving force magnitude beyond which the separation is due to occur.

Cisco Systems, Inc.

To Quantify a Wetting Balance Curve

Technical Library | 2017-10-19 01:17:56.0

Wetting balance testing has been an industry standard for evaluating the solderability of surface finishes on printed circuit boards (PCB) for many years. A Wetting Balance Curve showing Force as a function of Time, along with the individual data outputs "Time to Zero" T(0), "Time to Two-Thirds Maximum Force" T(2/3), and "Maximum Force" F(max) are usually used to evaluate the solderability performance of various surface finishes. While a visual interpretation of the full curve is a quick way to compare various test results, this method is subjective and does not lend itself readily to a rigorous statistical evaluation. Therefore, very often, when a statistical evaluation is desired for comparing the solderability between different surface finishes or different test conditions, one of the individual parameters is chosen for convenience. However, focusing on a single output usually doesn't provide a complete picture of the solderability of the surface finish being evaluated.In this paper, various models here-in labeled as "point" and "area" models are generated using the three most commonly evaluated individual outputs T(0), T(2/3), and F(max). These models have been studied to quantify how well each describes the full wetting balance curve. The solderability score (S-Score) with ranking from 0 to 10 were given to quantify the wetting balance curve as the result of the model study, which corresponds well with experimental results.

Enthone

Low Temperature SMT Solder Evaluation

Technical Library | 2020-09-23 21:29:25.0

The electronics industry could benefit greatly from using a reliable, manufacturable, reduced temperature, SMT solder material (alloy-composition) which is cost competitive with traditional Sn3Ag0.5Cu (SAC305) solder. The many possible advantages and some disadvantages / challenges are discussed. Until recently, the use of Sn/Bi based materials has been investigated with negative consequences for high strain rate (drop-shock) applications and thus, these alloys have been avoided. Recent advances in alloy "doping" have opened the door to revisit Sn/Bi alloys as a possible alternative to SAC-305 for many applications. We tested the manufacturability and reliability of three low-temperature and one SAC-305 (used as a control) solder paste materials. Two of these materials are doped Sn/Bi/Ag and one is just Sn/Bi/Ag1%. We will discuss the tests and related results. And lastly, we will discuss the prospects, applications and possible implications (based on this evaluation) of these materials together with future actions.

Flextronics International

Preparation, Manufacturing Lead-Free Soldering Alloy

Technical Library | 2014-11-28 15:55:13.0

A soldering alloy composition Sn40-Bi60 has been manufactured by quenching method to achieve the both cast and wire shape. Differential scanning calorimetric (DSC) was done to study the melting behavior for a large portion of the alloy melts sharply at a approximately 136 C0 ,the melting point of Sn-Bi. X-Ray diffraction and optical microscopy were used to analyzed its microstructure characterization. The hardness of the alloys has been tested and find at a value 2 HRB as ductile form.

University of Baghdad

A High Thermal Conductive Solderable Adhesive

Technical Library | 2016-11-17 14:37:41.0

With increasing LED development and production, thermal issues are becoming more and more important for LED devices, particularly true for high power LED and also for other high power devices. In order to dissipate the heat from the device efficiently, Au80Sn20 alloy is being used in the industry now. However there are a few drawbacks for Au80Sn20 process: (1) higher soldering temperature, usually higher than 320°C; (2) low process yield; (3) too expensive. In order to overcome the shortcomings of Au80Sn20 process, YINCAE Advanced Materials, LLC has invented a new solderable adhesive – TM 230. Solderable adhesives are epoxy based silver adhesives. During the die attach reflow process, the solder material on silver can solder silver together, and die with pad together. After soldering, epoxy can encapsulate the soldered interface, so that the thermal conductivity can be as high as 58 W/mk. In comparison to Au80Sn20 reflow process, the solderable adhesive has the following advantages: (1) low process temperature – reflow peak temperature of 230°C; (2) high process yield – mass reflow process instead of thermal compression bonding process; (3) low cost ownership. In this paper we are going to present the die attach process of solderable adhesive and the reliability test. After 1000 h lighting of LED, it has been found that there is almost no decay in the light intensity by using solderable adhesive – TM 230.

YINCAE Advanced Materials, LLC.

Reliability Screening of Lower Melting Point Pb-Free Alloys Containing Bi

Technical Library | 2015-07-01 16:51:43.0

Aerospace and military companies continue to exercise RoHS exemptions and to intensively research the long term attachment reliability of RoHS compliant solders. Their products require higher vibration, drop/shock performance, and combined-environment reliability than the conventional SAC305 alloy provides. The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. One possible route to improvement of the mechanical and thermo-mechanical properties of solder joints is the use of Pb-free solders with lower process temperatures. Lower temperatures help reduce the possibility of damaging the boards and components, and also may allow for the use of lower Tg board materials which are less prone to pad cratering defects. There are several Sn-Ag-Bi and Sn-Ag-Cu-Bi alloys which melt about 10°C lower than SAC305. The bismuth in these solder compositions not only reduces the melting temperature, but also improves thermo-mechanical behavior. An additional benefit of using Bi-containing solder alloys is the possibility to reduce the propensity to whisker growth

Honeywell International


soldering pull test searches for Companies, Equipment, Machines, Suppliers & Information