Technical Library: lead-free solder paste (Page 10 of 26)

Stencil Design for Lead-Free SMT Assembly

Technical Library | 2018-03-05 11:17:31.0

In order to comply with RoHS and WEEE directives, many circuit assemblers are transitioning some or all of their soldering processes from tin-lead to lead-free within the upcoming year. There are no drop-in replacement alloys for tin-lead solder, which is driving a fundamental technology change. This change is forcing manufacturers to take a closer look at everything associated with the assembly process: board and component materials, logistics and materials management, solder alloys and processing chemistries, and even soldering methods. Do not expect a dramatic change in soldering behavior when moving to lead-free solders. The melting points of the alloys are higher, but at molten temperatures the different alloys show similar behaviors in a number of respects. Expect subtler changes, especially near the edges of a process window that is assumed based on tin-lead experience rather than defined through lead-free experimentation. These small changes, many of them yet to be identified and understood, will manifest themselves with lower assembly yields. The key to keeping yields up during the transition to lead-free is quickly learning what and where the subtle distinctions are, and tuning the process to accommodate them.

Cookson Electronics

Selection Of Wave Soldering Fluxes For Lead-Free Assembly

Technical Library | 2008-07-10 12:52:18.0

This paper reviews the J-STD-004 and how it is used in flux categorization and selection. It also discusses the major types of flux formulations available, and the design, process and reliability implications of using each type. The purpose of the paper is to help the reader make an informed choice when selecting wave solder fluxes for lead-free processing.

Cookson Electronics

Lead-free SMT Soldering Defects How to Prevent Them

Technical Library | 2012-10-23 14:25:38.0

Tin-Silver-Copper alloys are the primary choice for lead-free SMT assembly. Although there are other options available such as alloys containing bismuth or indium and other elements, tin-silver-copper solders, also known as SAC alloys are by far the most popular. They are used by approximately 65% of users, as last surveyed by Soldertec in 2003.

Kester

Microstructure and Intermetallic Formation in SnAgCu BGA Components Attached With SnPb Solder Under Isothermal Aging

Technical Library | 2022-10-31 17:09:04.0

The global transition to lead-free (Pb-free) electronics has led component and equipment manufacturers to transform their tin–lead (SnPb) processes to Pb-free. At the same time, Pb-free legislation has granted exemptions for some products whose applications require high long-term reliability. However, due to a reduction in the availability of SnPb components, compatibility concerns can arise if Pb-free components have to be utilized in a SnPb assembly. This compatibility situation of attaching a Pb-free component in a SnPb assembly is generally termed "backward compatibility." This paper presents the results of microstructural analysis of mixed solder joints which are formed by attaching Pb-free solder balls (SnAgCu) of a ball-grid-array component using SnPb paste. The experiment evaluates the Pb phase coarsening in bulk solder microstructure and the study of intermetallic compounds formed at the interface between the solder and the copper pad.

CALCE Center for Advanced Life Cycle Engineering

Strength of Lead-free BGA Spheres in High Speed Loading

Technical Library | 2008-04-08 17:42:27.0

Concern about the failure of lead-free BGA packages when portable devices such as cell phones are accidentally dropped and a general concern about the resistance of these packages under shock loading has prompted an interest in the impact strength of the soldered BGA connection. This paper reports the results of the measurement of the impact strength of lead-free 0.5±0.01mm diameter BGA spheres on 0.42mm solder mask defined pads on copper/OSP and ENIG substrates using recently developed equipment that can load individual BGA spheres at high strain rates in shear and tension.

Nihon Superior Co., Ltd.

Troubleshooting SMT Solder Paste Problems

Technical Library | 2018-03-05 11:14:17.0

Troubleshooting SMT Solder Paste Problems

Heraeus

Effect of Surface Oxide on the Melting Behavior of Lead-Free Solder Nanowires and Nanorods

Technical Library | 2013-07-18 12:12:40.0

Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders.

Department of Chemical Engineering, University of Massachusetts

Equipment Impacts of Lead Free Wave Soldering

Technical Library | 2003-04-18 12:05:57.0

The popular tin (Sn) rich lead free solders are causing severe corrosion to many of the materials used in today's Wave Solder systems. Users are experiencing higher maintenance frequency and reduced life of wave solder machine components. This paper describes the effects of Sn rich solders in contact with various materials and discusses alternate methods to alleviate this problem.

Cookson Electronics

Solder Crack Counter Measures

Technical Library | 2023-11-27 18:19:40.0

This page introduces major causes and countermeasures of solder crack in MLCCs (Multilayer Ceramic Chip Capacitors). Major causes of solder cracks Solder cracks on MLCCs developed from severe usage conditions after going on the market and during manufacturing processes such as soldering. Applications and boards that specially require solder crack countermeasures Solder cracks occur mainly because of thermal fatigue due to thermal shock or temperature cycles or the use of lead-free solder, which is hard and fragile.

TDK - Lambda Americas

Intermetallic Compounds In Solar Cell Interconnections Including Lead-Free, Low Melting Point Solders

Technical Library | 2017-10-05 17:13:04.0

Intermetallic compounds (IMC) in solder bonds are commonly considered critical for the reliability of interconnections. The microstructure and thermal aging characteristics of solder bonds of crystalline silicon solar cells are investigated, whereby two solders, Sn60Pb40 and a lead-free, low melting point alternative Sn41Bi57Ag2 are considered.

Fraunhofer Insitute for Solar Energy Systems ISE


lead-free solder paste searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling with CE

World's Best Reflow Oven Customizable for Unique Applications
Software for SMT

High Precision Fluid Dispensers
2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven