Technical Library: backplanes (Page 1 of 1)

Small Volume Solder Paste Dispensing for Aerospace and Defense

Technical Library | 2023-09-07 14:38:31.0

A repeat customer specializing in high-technology interconnect, sensor, and antenna solutions, partnered with us to dispense small volumes of solder paste (Indium 10.1 SAC305 T6SG 78%m) onto backplane connectors – gold pads 0.175mm x 0.225mm. We performed a test requiring 0.200mm diameter or smaller dots to demonstrate the dispensing capability required.

GPD Global

Backplane Architecture High-Level Design

Technical Library | 2011-03-16 20:09:11.0

The backplane is the key component in any system architecture. The sooner one considers the backplane’s physical architecture near the beginning of a project, the more successful the project will be. This white paper introduces the concept of a backplane

Lamsim Enterprises Inc.

PWB Manufacturing Variability Effects on High Speed SerDes Links: Statistical Insights from Thousands of 4-Port SParameter Measurements

Technical Library | 2010-08-05 18:39:39.0

Variability analysis is important in successfully deploying multi-gigabit backplane printed wiring boards (PWBs) with growing numbers of high-speed SerDes links. We discuss the need for large sample sizes to obtain accurate variability estimates of SI me

i3 Electronics

Press Fit Technology Roadmap and Control Parameters for a High Performance Process

Technical Library | 2016-10-27 16:24:23.0

Press-fit technology is a proven and widely used and accepted interconnection method for joining electronics assemblies. Printed Circuit Board Assembly Systems and typical functional subassemblies are connected through press-fit connectors. The Press-Fit Compliant Pin is a proven interconnect termination to reliably provide electrical and mechanical connections from a Printed Circuit Board to an Electrical Connector. Electrical Connectors are then interconnected together providing board to board electrical and mechanical inter-connection. Press-Fit Compliant Pins are housed within Connectors and used on Backplanes, Mid-planes and Daughter Card Printed Circuit Board Assemblies. High reliability OEM (Original Equipment Manufacturer) computer designs continue to use press-fit connections to overcome challenges associated with soldering, rework, thermal cycles, installation and repair. This paper investigates the technical roadmap for press fit technology, putting special attention to main characteristics such, placement and insertion, inspection, repair, pin design trends, challenges and solutions. Critical process control parameters within an assembly manufacturing are highlighted.

Flex (Flextronics International)

Solutions for Selective Soldering of High Thermal Mass and Fine-Pitch Components

Technical Library | 2020-05-07 03:46:27.0

The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.

SELECT Products | Nordson Electronics Solutions

Techniques for Selective Soldering High Thermal Mass and Fine-Pitch Components

Technical Library | 2022-08-08 15:06:06.0

Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.

Hentec Industries, Inc. (RPS Automation)

  1  

backplanes searches for Companies, Equipment, Machines, Suppliers & Information