Technical Library: bga board (Page 1 of 3)

BGA Placement on Rework Station

Technical Library | 2019-06-12 10:33:58.0

The success of ball grid array (BGA) placement on electronic assemblies is as much a matter of proper preparation and planning, as it is technique. In some designs, it is more appropriate to apply BGAs using a rework station that isolates the placement of the device, without subjecting the entire assembly to thermal reflow. This is especially beneficial in board constructions where the number of BGAs is limited, and the application of the solder paste is difficult, due to small pitch features that stretch the limitation of the stencil construction. Another application for rework stations, involves very large and thermally conductive BGAs, which will not uniformly reflow with other components on the assembly, and may require special process parameters for their proper placement. The most common use of BGA rework stations are for assemblies requiring BGA removal and replacements due to failures in the initial assembly stage.

ACI Technologies, Inc.

Pad Cratering

Technical Library | 2020-05-08 18:22:31.0

A customer contacted the Helpline to perform analysis on a lead-free assembly which exhibited intermittent functionality. The lead-free assembly exhibiting intermittent functionality when pressure was applied to the ball grid array (BGA) packages. Industrial adaptation of a Restriction of Hazardous Substances (RoHS) compliant solder standard has created a new host of failure modes observed in lead-free assemblies. Pad cratering occurs when fractures propagate along the epoxy resin layer on the underside of the BGA connecting pads. While originating from process, design, and end use conditions, it is the combination of a rigid lead-free solder with inflexible printed circuit board (PCB) laminates that has advanced the prevalence of this condition. Pad cratering is simply the result of mechanical stress exceeding material limitations.

ACI Technologies, Inc.

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

BGA Thermal Shock Testing

Technical Library | 2007-02-01 09:27:47.0

The purpose of the testing was to compare the resistance and check for open circuit conditions of reworked BGA test samples made with and without StencilQuik™ after 500 thermal shock cycles. StencilQuick™ is a product of Best Inc. In this series of tests, the resistance of daisy chain resistance patterns running between the BGA and test board after exposure to thermal shock was measured.

BEST Inc.

StencilQuick™ Lead-Free Solder Paste Rework Study

Technical Library | 2007-01-31 15:17:04.0

The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.

BEST Inc.

Solder Paste for BGA Rework | Multiple Methods for Applying Paste Flux

Technical Library | 2017-03-30 18:34:52.0

There are multiple methods, each with its associated benefits for given applications, for printing either solder paste or paste flux for BGA rework. Each of these methods is best-suited for a given situation, board layout and skill level of operators performing the BGA rework. This discussion will layout the various methods and present the specific circumstances for which the specific technique is most wellsuited. In addition, the pluses and minuses for each of the approaches will be discussed in detail.

BEST Inc.

BGA Rework Process

Technical Library | 2017-02-01 02:20:42.0

BGA Rework Course encompasses the skills necessary to perform rework of electronic printed circuit boards to include PBGA and CBGA technologies. There should be 'one-stop' solution, that offers a wide range of ball grid array rework and repair services.

BEST Inc.

Larger Packages Fuel Thermal Strategies

Technical Library | 1999-05-06 11:18:25.0

The trend toward surface-mount assembly processes is making ball-grid array (BGA) packaging a popular choice for many types of devices, forcing designers to re-examine cooling of these large packages. While devices in BGAs transfer more heat to the board than leaded devices, the style of BGA packages has a large influence on the ability to transfer heat through other pathways, such as a top-mounted heat sink. Physical characteristics of the BGA further constrain the thermal designer. It takes forethought in board design to successfully accommodate devices that require significant heat dissipation. Multiple solutions exist, however, for BGA packages of all types.

Aavid Thermalloy, LLC

Board-Level Thermal Cycling and Drop-Test Reliability of Large, Ultrathin Glass BGA Packages for Smart Mobile Applications

Technical Library | 2018-08-22 14:05:42.0

Glass substrates are emerging as a key alternative to silicon and conventional organic substrates for high-density and high-performance systems due to their outstanding dimensional stability, enabling sub-5-µm lithographic design rules, excellent electrical performance, and unique mechanical properties, key in achieving board-level reliability at body sizes larger than 15 × 15 mm2. This paper describes the first demonstration of the board-level reliability of such large, ultrathin glass ball grid array (BGA) packages directly mounted onto a system board, considering both their thermal cycling and drop-test performances.

Institute of Electrical and Electronics Engineers (IEEE)

  1 2 3 Next

bga board searches for Companies, Equipment, Machines, Suppliers & Information