Technical Library: black solder color (Page 1 of 1)

Yamaha Mounter Accessories 6604098 Class I Laser Product CyberOptics Unit Laser

Technical Library | 2022-10-31 09:01:25.0

Delivery Time: 1-2 Days Attributes: Original New Material: Metal Shipping Ways: DHL, FedEx, TNT, UPS, By Sea,DDP Dedicated Line Color: Black Certification: ISO

Shenzhen Zhongrun Hi-Tech Technology Co., Ltd.

OOOH Colors, It Must Be Lead Free

Technical Library | 2014-06-23 14:50:52.0

It was unusual to see chip terminations change colors when tin lead solders were used but with the introduction of lead free reflow soldering and the corresponding increases in reflow temperatures terminations are now changing colors. Two conditions are present when reflow temperatures are increased for lead free solder alloys that leads to discoloration. Reflow temperatures are above the melting point of tin (Sn MP is 232oC). Air temperatures commonly used in forced convection reflow systems are high enough to both melt the tin plating on the termination allowing it to be pulled into the solder joint due to solder joint liquid solder surface tension leaving behind the exposed nickel barrier. Now those metal oxide colors will be visible due to high air temperatures during reflow.

Johanson Dielectrics, Inc.

Identification and Prevention of "Black Pad"

Technical Library | 2013-01-17 15:34:33.0

The use of an electroless nickel, immersion gold (ENIG) surface finish comes with the inherent potential risk of Black Pad failures that can cause fracture embrittlement at the interface between the solder and the metal pad. As yet, there is no conclusive agreed solution to effectively eliminate Black Pad failures. The case studies presented are intended to add to the understanding of the Black Pad failure mechanism and to identify both the plating and the subsequent assembly processes and conditions that can help to prevent the likelihood of Black Pad occurring.

Jabil Circuit, Inc.

Dispelling the Black Magic of Solder Paste

Technical Library | 2016-01-21 16:52:27.0

Solder paste has long been viewed as "black magic". This "black magic" can easily be dispelled through a solder paste evaluation. Unfortunately, solder paste evaluation can be a challenge for electronic assemblers. Interrupting the production schedule to perform an evaluation is usually the first hurdle. Choosing the solder paste properties to test is simple, but testing for these properties can be difficult. Special equipment or materials may be required depending upon the tests that are chosen. Once the testing is complete, how does one make the decision to choose a solder paste? Is the decision based on gut feel or hard data?This paper presents a process for evaluating solder pastes using a variety of methods. These methods are quick to run and are challenging, revealing the strengths and weaknesses of solder pastes. Methods detailed in this paper include: print volume, stencil life, response to pause, open time, tack force over time, wetting, solder balling, graping, voiding, accelerated aging, and others.

FCT ASSEMBLY, INC.

Color Based Printed Circuit Board Solder Segmentation

Technical Library | 2010-09-30 21:07:29.0

As technology is much more advanced nowadays, electronic devices are ubiquitous in our daily life. PCB (Printed Circuit Board) plays an important role in almost every modern electronic device. However, there still is not a perfect PCB manufacturing proces

National Taiwan University

Solving the ENIG Black Pad Problem: An ITRI Report on Round 2

Technical Library | 2013-01-17 15:37:21.0

A problem exists with electroless nickel / immersion gold (ENIG) surface finish on some pads, on some boards, that causes the solder joint to separate from the nickel surface, causing an open. The solder has wet and dissolved the gold. A weak tin to nickel intermetallic bond initially occurs, but the intermetallic bond cracks and separates when put under stress. Since the electroless nickel / immersion gold finish performs satisfactory in most applications, there had to be some area within the current chemistry process window that was satisfactory. The problem has been described as a 'BGA Black Pad Problem' or by HP as an 'Interfacial Fracture of BGA Packages…'[1]. A 24 variable experiment using three different chemistries was conducted during the ITRI (Interconnect Technology Research Institute) ENIG Project, Round 1, to investigate what process parameters of the chemical matrix were potentially satisfactory to use and which process parameters of the chemical matrix need to be avoided. The ITRI ENIG Project has completed Round 1 of testing and is now in the process of Round 2 TV (Test Vehicle) build.

Celestica Corporation

Aiming for High First-pass Yields in a Lead-free Environment

Technical Library | 2010-03-04 18:11:53.0

While the electronics manufacturing industry has been occupied with the challenge of RoHS compliance and with it, Pb-free soldering, established trends of increasing functionality and miniaturization have continued. The increasing use of ultra-fine pitch and area-array devices presents challenges in both printing and flux technology. With the decrease in both the size and the pitch of said components, new problems may arise, such as head-in-pillow and graping defects

Indium Corporation

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

  1  

black solder color searches for Companies, Equipment, Machines, Suppliers & Information

convection smt reflow ovens

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Formic Reflow Soldering

World's Best Reflow Oven Customizable for Unique Applications
PCB Handling with CE

Training online, at your facility, or at one of our worldwide training centers"
2024 Eptac IPC Certification Training Schedule

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...


SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...