Technical Library: ccd camera calibration (Page 1 of 1)

Precision Control in Electronic Assembly: Selective Wave Soldering Machine

Technical Library | 2024-02-26 09:08:23.0

Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Best Practices for Quality Control in Conformal Coating Applications

Technical Library | 2024-08-09 06:34:09.0

Quality control in conformal coating applications is vital for ensuring the reliability and longevity of electronic products. Conformal coatings protect printed circuit boards (PCBs) from environmental factors like moisture, dust, and chemicals. To maintain high standards, various inspection methods are employed throughout the coating process. Visual Inspection This is the first line of defense against defects. Inspectors look for uniform coverage, absence of bubbles, and proper curing. Training is essential to ensure that inspectors can identify subtle issues that may affect performance. UV Inspection Most conformal coatings contain a UV tracer, which makes the coating visible under ultraviolet light. UV inspection allows for easy detection of missed areas, ensuring complete coverage. This step is crucial for verifying that the coating has been applied correctly, especially in hard-to-see areas of the PCB. Automated Optical Inspection (AOI) AOI systems offer a more precise and consistent method for inspecting conformal coatings. They use cameras and specialized software to detect defects that might be missed by the human eye. AOI systems can inspect large volumes of PCBs quickly, making them ideal for high-production environments. Thickness Measurement The thickness of the conformal coating is critical for providing adequate protection without affecting the performance of the PCB. Tools such as micrometers, ultrasonic thickness gauges, and eddy current devices are used to measure the coating thickness. Consistent application is key to preventing issues like cracking or insufficient protection. Functional Testing Beyond visual and automated inspections, functional testing is necessary to ensure that the conformal coating does not interfere with the electrical performance of the PCB. This involves subjecting the coated PCB to environmental stress tests, such as thermal cycling, humidity, and salt spray, to assess its reliability in real-world conditions. Process Control and Documentation Implementing strict process controls is essential to maintaining quality. This includes regularly calibrating equipment, training operators, and documenting every step of the process. Proper documentation helps trace issues back to their source and prevents them from recurring. Conclusion Effective quality control in conformal coating applications ensures that PCBs are protected from environmental damage, thereby extending their lifespan and reliability. By employing a combination of visual, UV, and automated inspections, along with thickness measurement and functional testing, manufacturers can achieve the highest standards in coating quality.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

An Automatic Surface Defect Inspection System for Automobiles Using Machine Vision Methods

Technical Library | 2020-08-27 01:15:10.0

Automobile surface defects like scratches or dents occur during the process of manufacturing and cross-border transportation. This will affect consumers' first impression and the service life of the car itself. In most worldwide automobile industries, the inspection process is mainly performed by human vision, which is unstable and insufficient. The combination of artificial intelligence and the automobile industry shows promise nowadays. However, it is a challenge to inspect such defects in a computer system because of imbalanced illumination, specular highlight reflection, various reflection modes and limited defect features. This paper presents the design and implementation of a novel automatic inspection system (AIS) for automobile surface defects which are the located in or close to style lines, edges and handles. The system consists of image acquisition and image processing devices, operating in a closed environment and noncontact way with four LED light sources. Specifically, we use five plane-array Charge Coupled Device (CCD) cameras to collect images of the five sides of the automobile synchronously. Then the AIS extracts candidate defect regions from the vehicle body image by a multi-scale Hessian matrix fusion method. Finally, candidate defect regions are classified into pseudo-defects, dents and scratches by feature extraction (shape, size, statistics and divergence features) and a support vector machine algorithm. Experimental results demonstrate that automatic inspection system can effectively reduce false detection of pseudo-defects produced by image noise and achieve accuracies of 95.6% in dent defects and 97.1% in scratch defects, which is suitable for customs inspection of imported vehicles.

Nanjing University

A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards

Technical Library | 2024-04-29 21:39:52.0

In this paper, we develop and put into practice an Automatic Optical Inspection (AOI) system based on machine vision to check the holes on a printed circuit board (PCB). We incorporate the hardware and software. For the hardware part, we combine a PC, the three-axis positioning system, a lighting device and CCD cameras. For the software part, we utilize image registration, image segmentation, drill numbering, drill contrast, and defect displays to achieve this system. Results indicated that an accuracy of 5µm could be achieved in errors of the PCB holes allowing comparisons to be made. This is significant in inspecting the missing, the multi-hole and the incorrect location of the holes. However, previous work only focusses on one or other feature of the holes. Our research is able to assess multiple features: missing holes, incorrectly located holes and excessive holes. Equally, our results could be displayed as a bar chart and target plot. This has not been achieved before. These displays help users analyze the causes of errors and immediately correct the problems. Additionally, this AOI system is valuable for checking a large number of holes and finding out the defective ones on a PCB. Meanwhile, we apply a 0.1mm image resolution which is better than others used in industry. We set a detecting standard based on 2mm diameter of circles to diagnose the quality of the holes within 10 seconds.

National Cheng Kung University

  1  

ccd camera calibration searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven
fluid dispenser

Training online, at your facility, or at one of our worldwide training centers"
Electronics Equipment Consignment

World's Best Reflow Oven Customizable for Unique Applications
Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers


"Heller Korea"