Technical Library: cmos (Page 1 of 1)

Investigation of Device Damage Due to Electrical Testing

Technical Library | 2012-12-14 14:28:20.0

This paper examines the potential failure mechanisms that can damage modern lowvoltage CMOS devices and their relationship to electrical testing. Failure mechanisms such as electrostatic discharge (ESD), CMOS latch-up, and transistor gate oxide degradation can occur as a result of electrical over-voltage stress (EOS). In this paper, EOS due to electrical testing is examined and an experiment is conducted using pulsed voltage waveforms corresponding to conditions encountered during in-circuit electrical testing. Experimental results indicate a correlation between amplitude and duration of the pulse waveform and device degradation due to one or more of the failure mechanisms.

Worcester Polytechnic Institute

A PROM Element Based on Salicide Agglomeration of Poly Fuses in a CMOS Logic Process

Technical Library | 1999-05-07 10:18:34.0

A novel programmable element has been developed and evaluated for state of the art CMOS processes. This element is based on agglomeration of tVarious aspects of these programmable devices including characterization and optimization of physical and electrical aspects of the element, programming yield, and reliability have been studied. Development ofhe Ti-silicide layer on top of poly fuses.

Intel Corporation

Test Structures for Benchmarking the Electrostatic Discharge (ESD) Robustness of CMOS Technologies

Technical Library | 1999-08-05 10:34:17.0

This document defines a set of standard test structures with which to benchmark the electrostatic discharge (ESD) robustness of CMOS technologies. The test structures are intended to be used to evaluate the elements of an integrated circuit in the high current and voltage ranges characteristic of ESD events. Test structures are given for resistors, diodes, MOS devices, interconnects, silicon control rectifiers, and parasitic devices. The document explains the implementation strategy and the method of tabulating ESD robustness for various technologies.

SEMATECH

Challenges on ENEPIG Finished PCBs: Gold Ball Bonding and Pad Metal Lift

Technical Library | 2017-09-07 13:56:11.0

As a surface finish for PCBs, Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) was selected over Electroless Nickel/Immersion Gold (ENIG) for CMOS image sensor applications with both surface mount technology (SMT) and gold ball bonding processes in mind based on the research available on-line. Challenges in the wire bonding process on ENEPIG with regards to bondability and other plating related issues are summarized.

Teledyne DALSA

Electromechanical Reliability Testing of Flexible Hybrid Electronics Incorporating FleX Silicon-on-Polymer ICs

Technical Library | 2021-08-18 01:24:20.0

Flexible Hybrid Electronics combine the best characteristics of printed electronics and silicon ICs to create high performance, ultra-thin, physically flexible systems. New static and dynamic tests are being developed to evaluate the performance of these systems. Dynamic radius of curvature and torsional test results are presented for a flexible hybrid electronics system with a FleX Silicon-on-Polymer operational amplifier manufactured in an 180nm CMOS process with 4-levels of metal interconnect mounted on a PET substrate.

American Semiconductor, Inc.

Nanoelectromechanical Switches for Low-Power Digital Computing

Technical Library | 2017-03-02 18:13:05.0

The need for more energy-efficient solid-state switches beyond complementary metal-oxide-semiconductor (CMOS) transistors has become a major concern as the power consumption of electronic integrated circuits (ICs) steadily increases with technology scaling. Nano-Electro-Mechanical (NEM) relays control current flow by nanometer-scale motion to make or break physical contact between electrodes, and offer advantages over transistors for low-power digital logic applications: virtually zero leakage current for negligible static power consumption; the ability to operate with very small voltage signals for low dynamic power consumption; and robustness against harsh environments such as extreme temperatures. Therefore, NEM logic switches (relays) have been investigated by several research groups during the past decade. Circuit simulations calibrated to experimental data indicate that scaled relay technology can overcome the energy-efficiency limit of CMOS technology. This paper reviews recent progress toward this goal, providing an overview of the different relay designs and experimental results achieved by various research groups, as well as of relay-based IC design principles. Remaining challenges for realizing the promise of nano-mechanical computing, and ongoing efforts to address these, are discussed.

EECS at University of California

Analog FastSPICE Platform Full-Circuit PLL Verification

Technical Library | 2016-06-30 14:00:32.0

When designing PLLs in nanometer CMOS, it is essential to validate the closed-loop PLL performance metrics with nanometer SPICE accuracy before going to silicon. Transistor-level, closed-loop PLL verification has been impractical due to traditional SPICE and RF simulator performance and capacity limitations. By using Analog FastSPICE, designers dont have to trade accuracy for performance. Read this white paper to see how AFS: Delivers closed-loop PLL transistor-level verification Supports direct jitter measurements Produces phase noise results correlating within 1-2dB of silicon

Mentor Graphics

Ultra-Thin Chips For High-Performance Flexible Electronics

Technical Library | 2020-01-15 23:54:34.0

Flexible electronics has significantly advanced over the last few years, as devices and circuits from nanoscale structures to printed thin films have started to appear. Simultaneously, the demand for high-performance electronics has also increased because flexible and compact integrated circuits are needed to obtain fully flexible electronic systems. It is challenging to obtain flexible and compact integrated circuits as the silicon based CMOS electronics, which is currently the industry standard for high-performance, is planar and the brittle nature of silicon makes bendability difficult. For this reason, the ultra-thin chips from silicon is gaining interest. This review provides an in-depth analysis of various approaches for obtaining ultra-thin chips from rigid silicon wafer. The comprehensive study presented here includes analysis of ultra-thin chips properties such as the electrical, thermal, optical and mechanical properties, stress modelling, and packaging techniques. The underpinning advances in areas such as sensing, computing, data storage, and energy have been discussed along with several emerging applications (e.g., wearable systems, m-Health, smart cities and Internet of Things etc.) they will enable. This paper is targeted to the readers working in the field of integrated circuits on thin and bendable silicon; but it can be of broad interest to everyone working in the field of flexible electronics.

Bendable Electronics and Sensing Technologies (BEST)

  1  

cmos searches for Companies, Equipment, Machines, Suppliers & Information