Technical Library: company (Page 9 of 10)

Impact of Assembly Cycles on Copper Wrap Plating

Technical Library | 2020-07-22 19:39:05.0

The PWB industry needs to complete reliability testing in order to define the minimum copper wrap plating thickness requirement for confirming the reliability of PTH structures. Predicting reliability must ensure that the failure mechanism is demonstrated as a wear-out failure mode because a plating wrap failure is unpredictable. The purpose of this study was to quantify the effects of various copper wrap plating thicknesses through IST testing followed by micro sectioning to determine the failure mechanism and identify the minimum copper wrap thickness required for a reliable PWB. Minimum copper wrap plating thickness has become an even a bigger concern since designers started designing HDI products with buried vias, microvias and through filled vias all in one design. PWBs go through multiple plating cycles requiring planarization after each plating cycle to keep the surface copper to a manageable thickness for etching. The companies started a project to study the relationship between Copper wrap plating thickness and via reliability. The project had two phases. This paper will present findings from both Phase 1 and Phase 2.

Firan Technology Group

Streaming Machine Learning and Online Active Learning for Automated Visual Inspection

Technical Library | 2021-11-22 20:39:44.0

Quality control is a key activity performed by manufacturing companies to verify product conformance to the requirements and specifications. Standardized quality control ensures that all the products are evaluated under the same criteria. The decreased cost of sensors and connectivity enabled an increasing digitalization of manufacturing and provided greater data availability. Such data availability has spurred the development of artificial intelligence models, which allow higher degrees of automation and reduced bias when inspecting the products. Furthermore, the increased speed of inspection reduces overall costs and time required for defect inspection. In this research, we compare five streaming machine learning algorithms applied to visual defect inspection with real world data provided by Philips Consumer Lifestyle BV. Furthermore, we compare them in a streaming active learning context, which reduces the data labeling effort in a real-world context. Our results show that active learning reduces the data labeling effort by almost 15% on average for the worst case, while keeping an acceptable classification performance. The use of machine learning models for automated visual inspection are expected to speed up the quality inspection up to 40%.

Jožef Stefan Institute

Solder Joint Reliability of Pb-free Sn-Ag-Cu Ball Grid Array (BGA) Components in Sn-Pb Assembly Process

Technical Library | 2020-10-27 02:07:31.0

For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.

Sanmina-SCI

The Effect Of Metallic Impurities On The Wetting Properties Of Solder

Technical Library | 1999-05-07 10:38:11.0

This paper is a report of a study made to determine the maximum allowable impurities in solder used for wave soldering applications. This report concludes with a list of impurities compiled from actual analyses of solder which caused production problems. A list of recommended maximum allowable impurities will assist in establishing reliable quality controls on the purity level of the solder in a wave soldering machine.

Kester

Soldering of SMD Film Capacitors in Practical Lead Free Processes

Technical Library | 2009-06-02 23:53:18.0

Today the lead free soldering process is a must in commercial electronics and it is also coming more and more important in automative and industrial electronics sectors in the near future. The most common choices for lead free solders are different Tin-Solder-Copper (SAC) alloys. Processes using SAC solders cause extra stress, because of increased process temperatures, especially to the plastic materials.

KEMET Electronics Corporation

Combination of Spray and Soak Improves Cleaning under Bottom Terminations

Technical Library | 2014-10-23 18:10:10.0

The functional reliability of electronic circuits determines the overall reliability of the product in which the final products are used. Market forces including more functionality in smaller components, no-clean lead-free solder technologies, competitive forces and automated assembly create process challenges. Cleanliness under the bottom terminations must be maintained in harsh environments. Residues under components can attract moisture and lead to leakage currents and the potential for electrochemical migration (...) The purpose of this research study is to evaluate innovative spray and soak methods for removing low residue flux residues and thoroughly rinsing under Bottom Termination and Leadless Components

KYZEN Corporation

Mitigation of Pure Tin Risk by Tin-Lead SMT Reflow- Results of an Industry Round-Robin

Technical Library | 2017-10-12 15:45:25.0

The risk associated with whisker growth from pure tin solderable terminations is fully mitigated when all of the pure tin is dissolved into tin-lead solder during SMT reflow. In order to take full advantage of this phenomenon, it is necessary to understand the conditions under which such coverage can be assured. A round robin study has been performed by IPC Task group 8-81f, during which identical sets of test vehicles were assembled at multiple locations, in accordance with IPC J-STD-001, Class 3. All of the test vehicles were analyzed to determine the extent of complete tin dissolution on a variety of component types. Results of this study are presented together with relevant conclusions and recommendations to guide high reliability end-users on the applicability and limitations of this mitigation strategy.

Raytheon

Why we need to proceed temperature humidity test?

Technical Library | 2019-10-29 02:55:33.0

For every 10 ℃ increase in temperature, the reaction rate is twice to three times. This means that for every 10 ℃ increase in temperature, the life span of the product will be halved, and when the temperature rises by 20 ℃, the life span of the product will be reduced to 1/4. High temperature will lead to aging, oxidation, evaporation, physical deformation and so on. Low temperature will lead to embrittlement, ice formation, viscosity and solidification degree, loss of mechanical strength, physical shrinkage and so on. When the product is shipped, stored and operated in the environment, it will be endangered. In addition, each product has regulatory and certification requirements, and it is important to evaluate reliability and durability before it is put on the market. In general, according to the IEC60068 test standard, it requires the volume of the laboratory to be at least five times the total volume of the sample under test. Haida constant temperature and humidity box can help you meet this demand. So with the fast developmement of manufacturing industry,test becomes a necessity to see wether the product is able to meet regulated standards in R&D satge,Climatest Symor specializes in handling temperature and humidity,we supply environmental test chamber to China State-owned Research Institutes and laboratories,and obtain excellent reputation from international cllients,our company put much efforts on chamber R&D ,striving to supply best-quality climate simulation equipment and after-sale service. For details,pls visit our official website www.climatechambers.com

Symor Instrument Equipment Co.,Ltd

Novel Approach to Void Reduction Using Microflux Coated Solder Preforms for QFN/BTC Packages that Generate Heat

Technical Library | 2019-08-07 22:56:45.0

The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.

Alpha Assembly Solutions

Full Material Declarations: Removing Barriers to Environmental Data Reporting

Technical Library | 2019-09-04 21:35:53.0

Since the European Directives, RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization and Restriction of Chemicals), entered into force in 2006-7, the number of regulated substances continues to grow. REACH adds new substances roughly twice a year, and more substances will be added to RoHS in 2019. While these open-ended regulations represent an ongoing burden for supply chain reporting, some ability to remain ahead of new substance restrictions can be achieved through full material declarations (FMD) specifically the IPC-1752A Class D Standard (the "Standard"), which was developed by the IPC - Association Connecting Electronic Industries. What is important to the supply chain is access to user-friendly, easily accessible or free, fully supported tools that allow suppliers to create and modify XML (Extensible Markup Language) files as specified in the Standard. Some tools will provide enhancements that validate required data entry and provide real-time interactive messages to facilitate the resolution of errors. In addition, validation and auto-population of substance CAS (Chemical Abstract Service) numbers, and Class D weight rollup validation ensure greater success in the acceptance of the declarations in customer systems that automate data gathering and reporting. A good tool should support importing existing IPC-1752A files for editing; this capability reduces the effort to update older declarations and greatly benefits suppliers of a family of products with similar composition. One of the problems with FMDs is the use of "wildcard" non-CAS numbers based on a declarable substance list (DSL). While the substances in different company's lists tend to have some overlap, no two DSL’s are the same. We provide an understanding of the commonality and differences between representative DSLs, and the ability to configure how much of a non-DSL substance percent is allowed. Case studies are discussed to show how supplier compliance data, can be automatically loaded into the customer's enterprise compliance system. Finally, we briefly discuss future enhancements and other developments like Once an Article, Always an Article (O5A) that will continue to require IPC standards and supporting tools to evolve.

TE Connectivity


company searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

High Precision Fluid Dispensers
convection smt reflow ovens

Component Placement 101 Training Course
Solder Paste Dispensing

Stencil Printing 101 Training Course


Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

Training online, at your facility, or at one of our worldwide training centers"
Assembly Automation Technology

"回流焊炉"