Technical Library: computing (Page 1 of 6)

Optimizing Reflowed Solder TIM (sTIMs) Processes for Emerging Heterogeneous Integrated Packages

Technical Library | 2023-01-17 17:12:33.0

Reflowed indium metal has for decades been the standard for solder thermal interface materials (solder TIMs or sTIMs) in most high-performance computing (HPC) TIM1 applications. The IEEE Heterogeneous Integration Thermal roadmap states that new thermal interface materials solutions must provide a path to the successful application of increased total-package die areas up to 100cm2. While GPU architectures are relatively isothermal during usage, CPU hotspots in complex heterogeneously-integrated modules will need to be able to handle heat flux hotspots up to 1000W/cm2 within the next two years. Indium and its alloys are used as reflowed solder thermal interface materials in both CPU and GPU "die to lid/heat spreader" (TIM1) applications. Their high bulk thermal conductivity and proven long-term reliability suit them well for extreme thermomechanical stresses. Voiding is the most important failure mode and has been studied by x-ray. The effects of surface pretreatment, pressure during reflow, solder flux type/fluxless processing, and preform design parameters, such as alloy type, are also examined. The paper includes data on both vacuum and pressure (autoclave) reflow of sTIMs, which is becoming necessary to meet upcoming requirements for ultralow voiding in some instances.

Heller Industries Inc.

Vacuum Fluxless Reflow Technology for Fine Pitch First Level Interconnect Bumping Applications

Technical Library | 2023-01-17 17:58:36.0

Heterogeneous integration has become an important performance enabler as high-performance computing (HPC) demands continue to rise. The focus to enable heterogeneous integration scaling is to push interconnect density limit with increased bandwidth and improved power efficiency. Many different advanced packaging architectures have been deployed to increase I/O wire / area density for higher data bandwidth requirements, and to enable more effective die disaggregation. Embedded Multi-die Interconnect Bridge (EMIB) technology is an advanced, cost-effective approach to in-package high density interconnect of heterogeneous chips, providing high density I/O, and controlled electrical interconnect paths between multiple dice in a package. In emerging architectures, it is required to scale down the EMIB die bump pitch in order to further increase the die-to-die (D2D) communication bandwidth. Aa a result, bump pitch scaling poses significant challenges in the plated solder bump reflow process, e.g., bump height / coplanarity control, solder wicking control, and bump void control. It's crucial to ensure a high-quality solder bump reflow process to meet the final product reliability requirements. In this paper, a combined formic acid based fluxless and vacuum assisted reflow process is developed for fine pitch plated solder bumping application. A high-volume production (HVM) ready tool has been developed for this process.

Heller Industries Inc.

Elevate Precision with the Automatic Visual Soldering Robot

Technical Library | 2023-09-13 11:54:35.0

Automatic visual soldering robots use computer vision to accurately weld complex parts. These robots can improve efficiency, quality, and safety in a variety of industries, including automotive, manufacturing, and aerospace.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

The Thermal Side of 64-Bit Processing

Technical Library | 1999-05-06 12:11:42.0

The newest workstations and servers, targeting computationally-intensive applications and large-scale database management, use 64-bit microprocessors and provide the next generation of computing power.

Aavid Thermalloy, LLC

Data Bus Components - The Communication System that Helps in Transferring Data

Technical Library | 2014-03-27 07:57:13.0

Data bus in computer terminology is a communication system that helps in transferring data between components within a computer, or between separate computers. Know more about data bus components and advancements in data bus technology by reading this article.

Just Connectors

Computer Vision Face Tracking For Use in a Perceptual User Interface

Technical Library | 1999-05-07 08:57:51.0

As a first step towards a perceptual user interface, a computer vision color tracking algorithm is developed and applied towards tracking human faces. Computer vision algorithms that are intended to form part of a perceptual user interface must be fast and efficient. They must be able to track in real time yet not absorb a major share of computational resources: other tasks must be able to run while the visual interface is being used. The new algorithm developed here is based on a robust nonparametric technique for climbing density gradients to find the mode (peak) of probability distributions called the mean shift algorithm.

Intel Corporation

Where will Computer Numerical Control Machines Go

Technical Library | 2021-11-04 01:34:02.0

At present, the development of Computer Numerical Control (CNC) machines with each passing day, characteristics of high-speed, high-precision, complex, intelligent, open, parallel drive, network, extreme, green have become the trend and direction.

OKmarts Industrial Parts Mall

Thermal Engineering Overview.

Technical Library | 1999-05-06 12:00:47.0

The present problem with cooling microprocessors is a relatively new issue -- about 4 years old. It stems from the collision of two conflicting trends -- end-user desire for more powerful microprocessors to run the next generation software, and the equally strong demand for smaller, more mobile computer form factors. With each, the introduction of faster next-generation semiconductors aimed at improving computing power, heat concentration problems increase.

Aavid Thermalloy, LLC

Manufacturing Substrates with Embedded Passives

Technical Library | 2011-05-05 16:17:34.0

Passives account for a very large part of today’s electronic assemblies. This is particularly true for digital products such as cellular phones, camcorders, and computers. Market pressures for new products with more features, smaller size and lower cost v

i3 Electronics

  1 2 3 4 5 6 Next

computing searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

Stencil Printing 101 Training Course
Software for SMT

High Precision Fluid Dispensers
Thermal Interface Material Dispensing

Wave Soldering 101 Training Course
PCB separator

SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...