Technical Library: cross-section analysis (Page 1 of 1)

Micro-Sectioning of PCBs for Failure Analysis

Technical Library | 2010-01-13 12:34:10.0

Micro-sectioning (sometimes referred to as cross-sectioning)is a technique, used to characterize materials or to perform a failure mode analysis, for exposing an internal section of a PCB or package. Destructive in nature, cross-sectioning requires encapsulation of the specimen in order to provide support, stability, and protection. Failures that can be investigated through micro-sectional analysis include component defects, thermo-mechanical failures, processing failures related to solder reflow, opens or shorts, voiding and raw material evaluations.

BEST Inc.

Applying Microscopic Analytic Techniques For Failure Analysis In Electronic Assemblies

Technical Library | 2021-09-21 20:36:45.0

The present paper gives an overview of surface failures, internal nonconformities and solders joint failures detected by microscopic analysis of electronic assemblies. Optical microscopy (stereomicroscopy) and Fourier-Transform- Infrared (FTIR) microscopy is used for documentation and failure localization on electronic samples surface. For internal observable conditions a metallographic cross-section analysis of the sample is required. The aim of this work is to present some internal and external observable nonconformities which frequently appear in electronic assemblies. In order to detect these nonconformities, optical microscopy, cross section analysis, FTIR-microscopy and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) were used as analytical techniques.

ZOLLNER ELECTRONICS, INC.

Fabrication Of Solderable Intense Pulsed Light Sintered Hybrid Copper For Flexible Conductive Electrodes

Technical Library | 2021-11-03 17:05:39.0

Additively printed circuits provide advantages in reduced waste, rapid prototyping, and versatile flexible substrate choices relative to conventional circuit printing. Copper (Cu) based inks along with intense pulsed light (IPL) sintering can be used in additive circuit printing. However, IPL sintered Cu typically suffer from poor solderability due to high roughness and porosity. To address this, hybrid Cu ink which consists of Cu precursor/nanoparticle was formulated to seed Cu species and fill voids in the sintered structure. Nickel (Ni) electroplating was utilized to further improve surface solderability. Simulations were performed at various electroplating conditions and Cu cathode surface roughness using the multi-physics finite element method. By utilizing a mask during IPL sintering, conductivity was induced in exposed regions; this was utilized to achieve selective Ni-electroplating. Surface morphology and cross section analysis of the electrodes were observed through scanning electron microscopy and a 3D optical profilometer. Energy dispersive X-ray spectroscopy analysis was conducted to investigate changes in surface compositions. ASTM D3359 adhesion testing was performed to examine the adhesion between the electrode and substrate. Solder-electrode shear tests were investigated with a tensile tester to observe the shear strength between solder and electrodes. By utilizing Cu precursors and novel multifaceted approach of IPL sintering, a robust and solderable Ni electroplated conductive Cu printed electrode was achieved.

Hanyang University

Alternative Methods For Cross-Sectioning Of SMT And PCB Related Architectures

Technical Library | 2021-09-21 20:20:22.0

The electronics industry has been using the epoxy puck for the processing of the vast majority of electronics microsections since the 1970s. Minimal advancements have been seen in the methods used for precision micro-sections of PCBs, PCBAs, and device packages. This paper will discuss different techniques and approaches in performing precision and analytical micro-sections, which fuse the techniques and materials common in preparation of silicon wafers and bulk materials. These techniques have not only been found to produce excellent optical results, but transfer effectively to SEM for high magnification inspection and further analysis with minimal post-lapping preparation needed. Additionally, processing time is reduced primarily due to a significant reduction of bulk material removal earlier in the preparation, therefore needing less removal at later lapping steps compared to traditional sectioning methods. Additional techniques are introduced that mitigate some classic challenges experienced by technicians over the decades.

Foresite Inc.

Analysis of Laminate Material Properties for Correlation to Pad Cratering

Technical Library | 2016-10-20 18:13:34.0

Pad cratering failure has emerged due to the transition from traditional SnPb to SnAgCu alloys in soldering of printed circuit assemblies. Pb-free-compatible laminate materials in the printed circuit board tend to fracture under ball grid array pads when subjected to high strain mechanical loads. In this study, two Pb-free-compatible laminates were tested, plus one dicycure non-Pb-free-compatible as control. One set of these samples were as-received and another was subjected to five reflows. It is assumed that mechanical properties of different materials have an influence on the susceptibility of laminates to fracture. However, the pad cratering phenomenon occurs at the layer of resin between the exterior copper and the first glass in the weave. Bulk mechanical properties have not been a good indicator of pad crater susceptibility. In this study, mechanical characterization of hardness and Young’s modulus was carried out in the critical area where pad cratering occurs using nano-indentation at the surface and in a cross-section. The measurements show higher modulus and hardness in the Pb-free compatible laminates than in the dicy-cured laminate. Few changes are seen after reflow – which is known to have an effect -- indicating that these properties do not provide a complete prediction. Measurements of the copper pad showed significant material property changes after reflow.

CALCE Center for Advanced Life Cycle Engineering

  1  

cross-section analysis searches for Companies, Equipment, Machines, Suppliers & Information

PCB Handling with CE

Smt Feeder repair service centers in Europe, North, South America
fluid dispenser

Wave Soldering 101 Training Course
SMT feeders

High Precision Fluid Dispensers
SMT feeders

High Throughput Reflow Oven
Circuit Board, PCB Assembly & electronics manufacturing service provider

Best Reflow Oven