Technical Library | 2008-03-13 13:02:50.0
Three full-field optical techniques, shadow moiré, fringe projection and digital image correlation (DIC), are used to measure temperature-dependent warpage for a PBGA package and a PCB component land site from room temperature to 250ºC. The results are qualitatively similar, but imaging resolution and noise properties create offsets between coplanarity values. The paper summarizes strengths and weaknesses for each technique.
Technical Library | 2024-07-24 00:51:44.0
A blade server system (BSS) utilizes voltage regulator modules (VRMs), in the form of quad flat no-lead (QFN) devices, to provide power distribution to various components on the system board. Depending on the power requirements of the circuit, these VRMs can be mounted as single devices or banked together. In addition, the power density of the VRM can be high enough to warrant heat dissipation through the use of a heat sink. Typically, at field conditions (FCs), the BSS are powered on and off up to four times per day, with their ambient temperature cycling between 258C and 808C. This cyclical temperature gradient drives inelastic strain in the solder joints due to the coefficient of thermal expansion (CTE) mismatch between the QFN and the circuit card. In addition, the heat sink, coupled with the QFN and the circuit card, can induce additional inelastic solder joint strain, resulting in early solder joint fatigue failure. To understand the effect of the heat sink mounting, a FEM (finite element model of four QFNs mounted to a BSS circuit card was developed. The model was exercised to calculate the maximum strain energy in a critical joint due to cyclic strain, and the results were compared for a QFN with and without a heat sink. It was determined that the presence of the heat sink did contribute to higher strain energy and therefore could lead to earlier joint failure. Although the presence of the heat sink is required, careful design of the mounting should be employed to provide lateral slip, essentially decoupling the heat sink from the QFN joint strain. Details of the modeling and results, along with DIC (digital image correlation) measurements of heat sink lateral slip, are presented.
1 |