Technical Library: dross adhesion to (Page 1 of 1)

How to Choose the Right PCB Coating Machine Line

Technical Library | 2023-11-07 09:36:38.0

How to Choose the Right PCB Coating Machine Line Selecting the ideal equipment for your PCB coating line can be a complex task. In this article, we will guide you through the critical components of a standard PCB coating machine line and their solutions to common challenges. We'll delve into the line's composition, including the elevator, transfer station, coating machine, inspection station, curing oven, and their interconnectedness through a return conveyor. Let's explore each element and understand its role. Components of a PCB Coating Machine Line: Elevator: The PCB coating process starts with an elevator, efficiently transporting PCB boards to the next stage. Transfer Station: After the elevator, boards are conveyed to a transfer station, preparing them for the coating process. Coating Machine: The heart of the PCB coating line is the coating machine. We offer a range of coating machines, including I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. Inspection Conveyor: Following the coating process, the boards move to an inspection station. The second transfer station is equipped with LED lights and a blue glass cover, enabling operators to closely inspect the coating quality. This feature is vital for ensuring consistent, dust-free coatings. Curing Oven: For UV-curable adhesives, we provide a UV curing oven to effectively solidify the adhesive. Return Conveyor: Beneath the entire line runs a return conveyor, connected to the elevator. This conveyor system efficiently returns PCBs from the last elevator to the first one, reducing manual handling and streamlining operations. The Advantages of the PCB Coating Line Design: 1. Easy Accessibility: The operator's station is strategically located beside the coating machine, ensuring easy access for setup and adjustments. 2. Enhanced Efficiency: The integrated return conveyor eliminates the need for manual transport, optimizing workflow. 3. Quality Control: The inspection station with the blue glass cover enables operators to inspect coatings for quality and cleanliness. 4. Dust Prevention: The blue glass cover also serves as a barrier to prevent dust contamination on freshly coated PCBs. Selecting the right PCB coating machine line is essential for achieving quality and efficiency in your operations. Our meticulously designed equipment line, along with its well-engineered components, can help you attain superior results. If you have further questions or need assistance in choosing the best solution for your specific requirements, please do not hesitate to contact us. We are committed to providing solutions that meet your needs and exceed your expectations.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

Kaphesion VSI Parylenes solution to Polyimide Adhesion

Technical Library | 2017-04-13 10:57:53.0

Parylene has been used for decades as a barrier layer to protect critical devices and components. The parylene deposition process typically requires an adhesion promotion step to make sure the parylene adheres well to the base substrate. Typical adhesion methods don't work well on Kapton and Polyamide, until VSI Parylene came up with a solution.

VSI Parylene

How to achieve optimum results in automated dispensing

Technical Library | 2020-02-13 08:41:18.0

Efficient bonding, sealing and potting has a major influence on the sustainable function and safety of electronic components. The key to success here lies in the comprehensive view and control of process engineering. Here it pays to seek collaboration with the systems and the material manufacturer during the very early stages of the project. This is because dispensing systems must be selected for compatibility with the workpiece and the adhesive, sealant or potting compound used. And there are also other factors that play an important role in designing the optimum dispensing system:

Scheugenpflug Inc.

Adhesion and Puncture Strength of Polyurethane Coating Used to Mitigate Tin Whisker Growth

Technical Library | 2022-01-26 15:22:33.0

Reliability of conformal coatings used to mitigate tin whisker growth depends on their ability to contain tin whiskers. Two key material properties required to assess the reliability of a polyurethane coating are documented experimentally: adhesion strength and puncture strength. A modified blister test using a predefined blister area is employed to assess the adhesion strength and a puncture test is employed to evaluate the puncture strength of the coating. After measuring the properties at time zero, the coatings are subjected to accelerated testing conditions (high temperature/humidity storage and temperature cycling) and the degradations of the coating properties are documented.

CALCE Center for Advanced Life Cycle Engineering

The Effects of Plasma Treatment Prior to Conformal Coating

Technical Library | 2021-10-06 17:54:32.0

The corrosion of Nickel-Palladium-Gold (Ni-Pd-Au) finish terminals in humid environments is known to be reduced with the application of a conformal coating such as acrylic. Corrosion has a higher rate of occurrence around the terminal 'knee' of a surface mount component, which may be reduced with the application of conformal coatings. Although radio frequency (RF) plasma processing is generally known to enhance conformity of conformal coating to surfaces through ionic bombardment, the effect on the functionality of assembled printed circuit boards (PCB) is not as well known. The purpose of this study is to assess whether RF plasma processing can enhance the adhesive and coverage qualities of an acrylic conformal coating on PCBs

MARCH Products | Nordson Electronics Solutions

Evaluating the Effects of Plasma Treatment prior to Conformal Coating on Electronic Assemblies to Enhance Conformity of Coverage

Technical Library | 2017-06-01 17:12:08.0

The corrosion of Nickel-Palladium-Gold (Ni-Pd-Au) finish terminals in humid environments is known to be reduced with the application of a conformal coating such as acrylic. Corrosion has a higher rate of occurrence around the terminal ‘knee’ of a surface mount component, which may be reduced with the application of conformal coatings. Although radio frequency (RF) plasma processing is generally known to enhance conformity of conformal coating to surfaces through ionic bombardment, the effect on the functionality of assembled printed circuit boards (PCB) is not as well known. The purpose of this study is to assess whether RF plasma processing can enhance the adhesive and coverage qualities of an acrylic conformal coating on PCBs, specifically on Ni-Pd-Au terminals with a knee, and if plasma processing has an effect on the electrical functionality of components and fully assembled PCB.

MARCH Products | Nordson Electronics Solutions

Thermal Spot Curing of Adhesives with Photonic Energy; a novel fiber delivery method of radiant heating to accelerate the polymerization of thermally active adhesives

Technical Library | 2011-09-22 16:30:11.0

The remainder of this paper will deal with the adhesive cure mechanism most often found in the microelectronics industry; the thermal activation and cure of adhesives that are most commonly based on epoxy backbones. The use of heat is already prevalent in the microelectronics industry as most printed circuit board assemblies use some element of this thermal energy (reflow ovens for example) during the component soldering and assembly stage or during their burn-in stage (convection ovens).

IRphotonics

Surface Treatment Enabling Low Temperature Soldering to Aluminum

Technical Library | 2020-07-29 19:58:48.0

The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.

Averatek Corporation

  1  

dross adhesion to searches for Companies, Equipment, Machines, Suppliers & Information