Technical Library | 2009-10-29 11:45:52.0
The globalization of markets results in stronger competition with clearly noticeably cost pressure. For companies producing electronic equipment it is therefore of existential importance to reduce production costs whilst maintaining a consistently high quality level of the manufactured products. Manual repair soldering that is expensive, time-consuming and cost intensive is already unacceptable due to the required quality and the reproducibility of the whole manufacturing process.
Technical Library | 2019-02-25 05:24:53.0
"The idea of the value chain is based on the process view of organizations, the idea of seeing a manufacturing (or service) organization as a system, made up of subsystems each with inputs, transformation processes and outputs".[1] The definition of a value-added chain by Michael E. Porter is one of many to be found in reference books, works and on websites. In principle, it involves a sequence of activities, executed by a manufacturing company to develop, produce, sell, ship, and maintain products or services. Three main parameters essentially influence a value-added chain: Direct activities − research, development, production, shipment etc. Indirect activities − maintenance, operation, occupational safety, environment etc. Quality assurance − monitoring, test/inspection; quality management etc. In particular, indirect activities and quality assurance generate a greater part of the costs in product manufacturing. This article principally focusses on the indirect activities, among them air purification.
Technical Library | 2020-10-27 02:07:31.0
For companies that choose to take the Pb-free exemption under the European Union's RoHS Directive and continue to manufacture tin-lead (Sn-Pb) electronic products, there is a growing concern about the lack of Sn-Pb ball grid array (BGA) components. Many companies are compelled to use the Pb-free Sn-Ag-Cu (SAC) BGA components in a Sn-Pb process, for which the assembly process and solder joint reliability have not yet been fully characterized. A careful experimental investigation was undertaken to evaluate the reliability of solder joints of SAC BGA components formed using Sn-Pb solder paste. This evaluation specifically looked at the impact of package size, solder ball volume, printed circuit board (PCB) surface finish, time above liquidus and peak temperature on reliability. Four different BGA package sizes (ranging from 8 to 45 mm2) were selected with ball-to-ball pitch size ranging from 0.5mm to 1.27mm. Two different PCB finishes were used: electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) on copper. Four different profiles were developed with the maximum peak temperatures of 210oC and 215oC and time above liquidus ranging from 60 to 120 seconds using Sn-Pb paste. One profile was generated for a lead-free control. A total of 60 boards were assembled. Some of the boards were subjected to an as assembled analysis while others were subjected to an accelerated thermal cycling (ATC) test in the temperature range of -40oC to 125oC for a maximum of 3500 cycles in accordance with IPC 9701A standard. Weibull plots were created and failure analysis performed. Analysis of as-assembled solder joints revealed that for a time above liquidus of 120 seconds and below, the degree of mixing between the BGA SAC ball alloy and the Sn-Pb solder paste was less than 100 percent for packages with a ball pitch of 0.8mm or greater. Depending on package size, the peak reflow temperature was observed to have a significant impact on the solder joint microstructural homogeneity. The influence of reflow process parameters on solder joint reliability was clearly manifested in the Weibull plots. This paper provides a discussion of the impact of various profiles' characteristics on the extent of mixing between SAC and Sn-Pb solder alloys and the associated thermal cyclic fatigue performance.
Technical Library | 2015-07-16 17:24:23.0
Qualification of electronic hardware from a corrosion resistance standpoint has traditionally relied on stressing the hardware in a variety of environments. Before the development of tests based on mixed flowing gas (MFG), hardware was typically exposed to temperature-humidity cycling. In the pre-1980s era, component feature sizes were relatively large. Corrosion, while it did occur, did not in general degrade reliability. There were rare instances of the data center environments releasing corrosive gases and corroding hardware. One that got a lot of publicity was the corrosion by sulfur-bearing gases given off by data center carpeting. More often, corrosion was due to corrosive flux residues left on as-manufactured printed circuit boards (PCBs) that led to ion migration induced electrical shorting. Ion migration induced failures also occurred inside the PCBs due to poor laminate quality and moisture trapped in the laminate layers.
1 |
Nordson Electronics Solutions makes reliable electronics an everyday reality. Our ASYMTEK, MARCH, and SELECT brands deliver precision fluid dispensing, conformal coating, plasma treatment and selective soldering equipment.
2762 Loker Ave West
Carlsbad, CA USA
Phone: 18002796835