Technical Library: excess solder flux (Page 2 of 9)

Through-Hole Soldering Defects And The Solutions

Technical Library | 2020-03-01 23:06:45.0

For though hole soldering, no matter it's wave soldering or selective soldering, the process is same formed by fluxing,preheating,soldering. How these 3 process will change the soldering result? When you face the soldering defects, what could be the reasons caused these and how to debug them? With below information you may get some hints.

1 CLICK SMT TECHNOLOGY CO., Limited

The Basics of Soldering

Technical Library | 2009-12-14 20:31:18.0

In this article, I will present a basic overview of soldering for those who are new to the world of soldering and for those who could use a refresher. I will discuss the definition of soldering, the basics of metallurgy, how to choose the proper alloy, the purpose of a flux, soldering temperatures, and typical heating sources for soldering operations.

Indium Corporation

Model for Improvement of Fluxing Process on Selective Soldering Machines

Technical Library | 2017-05-25 17:07:39.0

Purpose of this research is to identify the factors that directly influence the effectiveness of the fluxing process in selective soldering machines, using the design of experiment methodology with associated factors and levels used in the experiment. Final findings gives directions for set up of the optimal fluxing parameters that will enable appropriate flux appliance and to gain reduction of soldering quality issues which foundations are from this process.

Visteon Electronics

Hidden Head-In-Pillow soldering failures

Technical Library | 2022-12-23 20:44:54.0

One of the upcoming reliability issues which is related to the lead-free solder introduction, are the headin-pillow solderability problems, mainly for BGA packages. These problems are due to excessive package warpage at reflow temperature. Both convex and concave warpage at reflow temperature can lead to the head-in-pillow problem where the solder paste and solder ball are in mechanical contact but not forming one uniform joint. With the thermo-Moiré profile measurements, this paper explains for two flex BGA packages the head-in-pillow. Both local and global height differences higher than 100 µm have been measured at solder reflow temperature. This can be sufficient to have no contact between the molten solder ball and solder paste. Finally, the impact of package drying is measured

IMEC

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

Can Age and Storage Conditions Affect the SIR Performance of a No-Clean Solder Paste Flux Residue?

Technical Library | 2017-02-09 17:08:44.0

The SMT assembly world, especially within the commercial electronics realm, is dominated by no-clean solder paste technology. A solder paste flux residue that does not require removal is very attractive in a competitive world where every penny of assembly cost counts. One important aspect of the reliability of assembled devices is the nature of the no-clean solder paste flux residue. Most people in this field understand the importance of having a process that renders the solder paste flux residue as benign and inert as possible, thereby ensuring electrical reliability.But, of all the factors that play into the electrical reliability of the solder paste flux residue, is there any impact made by the age of the solder paste and how it was stored? This paper uses J-STD-004B SIR (Surface Insulation Resistance) testing to examine this question.

Indium Corporation

Quieting the Noise: Quality Wave Soldering Depends on Control of Its Many Parameters.

Technical Library | 2008-01-24 16:19:43.0

The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.

Vitronics Soltec

Laser Solder Reflow: A Process Solution Part I

Technical Library | 2007-09-06 11:03:33.0

EFD Inc. and Leister USA have collaborated to bust the myth that you cannot perform laser reflow with solder paste. Using Leister diode lasers, EFD has formulated solder pastes that survive the rapid reflow cycle typical of laser heating. These solder pastes reflow and wet well, without spatter, even when heating is accomplished in less than half a second. The flux core in wire solders cannot boast such flux spatter resistance in such an aggressive heating environment.

Nordson EFD

Understanding the Effect of Process Changes and Flux Chemistry on Mid-Chip Solder Balling

Technical Library | 2016-11-30 21:30:50.0

Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.

Henkel Electronic Materials

Validity of the IPC R.O.S.E. Method 2.3.25 Researched

Technical Library | 2010-06-10 21:01:48.0

This paper researches the effectiveness of the R.O.S.E. cleanliness testing process for dissolving and measuring ionic contaminants from boards soldered with no-clean and lead-free flux technologies.

KYZEN Corporation


excess solder flux searches for Companies, Equipment, Machines, Suppliers & Information

SMT Machines

High Throughput Reflow Oven
See Your 2024 IPC Certification Training Schedule for Eptac

World's Best Reflow Oven Customizable for Unique Applications
Circuit Board, PCB Assembly & electronics manufacturing service provider

We offer SMT Nozzles, feeders and spare parts globally. Find out more
Software for SMT

High Precision Fluid Dispensers