Technical Library: hong (Page 1 of 1)

An Overview of Advanced Failure Analysis Techniques for Pentium® and Pentium® Pro Microprocessors

Technical Library | 1999-05-07 08:55:49.0

Failure analysis (FA) is one of the key competencies in Intel. It enables very rapid achievement of world class manufacturing standards, resulting in excellent microprocessor time-to-market performance. This paper discusses the evolution of FA techniques from one generation of microprocessors to another.

Intel Corporation

A Compliant and Creep Resistant SAC-Al(Ni) Alloy

Technical Library | 2009-03-27 22:22:40.0

The Sn-Ag-Cu (SAC) alloys have been considered promising replacements for the lead-containing solders for the microelectronics applications. However, due to the rigidity of the SAC alloys, compared with the Pb-containing alloys, more failures have been found in the drop and high impact applications for the portable electronic devices, such as the personal data assistant (PDA), cellular phone, notebook computer..etc

Indium Corporation

Smart and Connected Bioelectronics for Seamless Health Monitoring and Persistent Human-Machine Interfaces

Technical Library | 2020-06-10 01:42:55.0

Recent advancement of flexible wearable electronics allows significant enhancement of portable, continuous health monitoring and persistent human-machine interfaces. Enabled by flexible electronic systems, smart and connected bioelectronics are accelerating the integration of innovative information science and engineering strategies, ultimately driving the rapid transformation of healthcare and medicine. Recent progress in the development and engineering of soft materials has provided various opportunities to design different types of mechanically deformable systems towards smart and connected bioelectronics.

Georgia Institute of Technology

Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

Technical Library | 2020-04-08 22:57:04.0

Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

Washington State Magazine

All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring

Technical Library | 2020-08-19 19:13:00.0

Commercially available health monitors rely on rigid electronic housing coupled with aggressive adhesives and conductive gels, causing discomfort and inducing skin damage. Also, research-level skin-wearable devices, while excelling in some aspects, fall short as concept-only presentations due to the fundamental challenges of active wireless communication and integration as a single device platform. Here, an all-in-one, wireless, stretchable hybrid electronics with key capabilities for real-time physiological monitoring, automatic detection of signal abnormality via deep-learning, and a long-range wireless connectivity (up to 15 m) is introduced. The strategic integration of thin-film electronic layers with hyperelastic elastomers allows the overall device to adhere and deform naturally with the human body while maintaining the functionalities of the on-board electronics. The stretchable electrodes with optimized structures for intimate skin contact are capable of generating clinical-grade electrocardiograms and accurate analysis of heart and respiratory rates while the motion sensor assesses physical activities. Implementation of convolutional neural networks for real-time physiological classifications demonstrates the feasibility of multifaceted analysis with a high clinical relevance. Finally, in vivo demonstrations with animals and human subjects in various scenarios reveal the versatility of the device as both a health monitor and a viable research tool.

Georgia Institute of Technology

  1  

hong searches for Companies, Equipment, Machines, Suppliers & Information

Win Source Online Electronic parts

Reflow Soldering 101 Training Course
Fluid Dispensing Aerospace

Wave Soldering 101 Training Course
PCB Handling Machine with CE

Software for SMT placement & AOI - Free Download.
Voidless Reflow Soldering

Best Reflow Oven
High Throughput Reflow Oven

Smt Feeder repair service centers in Europe, North, South America