Technical Library | 2023-11-07 09:36:38.0
How to Choose the Right PCB Coating Machine Line Selecting the ideal equipment for your PCB coating line can be a complex task. In this article, we will guide you through the critical components of a standard PCB coating machine line and their solutions to common challenges. We'll delve into the line's composition, including the elevator, transfer station, coating machine, inspection station, curing oven, and their interconnectedness through a return conveyor. Let's explore each element and understand its role. Components of a PCB Coating Machine Line: Elevator: The PCB coating process starts with an elevator, efficiently transporting PCB boards to the next stage. Transfer Station: After the elevator, boards are conveyed to a transfer station, preparing them for the coating process. Coating Machine: The heart of the PCB coating line is the coating machine. We offer a range of coating machines, including I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. Inspection Conveyor: Following the coating process, the boards move to an inspection station. The second transfer station is equipped with LED lights and a blue glass cover, enabling operators to closely inspect the coating quality. This feature is vital for ensuring consistent, dust-free coatings. Curing Oven: For UV-curable adhesives, we provide a UV curing oven to effectively solidify the adhesive. Return Conveyor: Beneath the entire line runs a return conveyor, connected to the elevator. This conveyor system efficiently returns PCBs from the last elevator to the first one, reducing manual handling and streamlining operations. The Advantages of the PCB Coating Line Design: 1. Easy Accessibility: The operator's station is strategically located beside the coating machine, ensuring easy access for setup and adjustments. 2. Enhanced Efficiency: The integrated return conveyor eliminates the need for manual transport, optimizing workflow. 3. Quality Control: The inspection station with the blue glass cover enables operators to inspect coatings for quality and cleanliness. 4. Dust Prevention: The blue glass cover also serves as a barrier to prevent dust contamination on freshly coated PCBs. Selecting the right PCB coating machine line is essential for achieving quality and efficiency in your operations. Our meticulously designed equipment line, along with its well-engineered components, can help you attain superior results. If you have further questions or need assistance in choosing the best solution for your specific requirements, please do not hesitate to contact us. We are committed to providing solutions that meet your needs and exceed your expectations.
Technical Library | 2024-02-26 09:08:23.0
Precision Control in Electronic Assembly: Selective Wave Soldering Machine Discover the technical features of I.C.T's Selective Wave Soldering Machines, including precision flux application and innovative preheating systems. Learn how these machines redefine efficiency and reliability in electronic assembly. Introduction: Enhancing Precision Soldering: Technical Features of Selective Wave Soldering Machines by I.C.T Explore the innovative design and operation of I.C.T's Selective Wave Soldering Machines, featuring a seamless PCB handling system and modular design for enhanced assembly line flexibility. Experience precision control and efficiency with comprehensive PC controls, allowing easy adjustment of solder parameters like temperature and flux type. Automatic calibration and CCD mark positioning ensure consistent soldering quality. Detail Excellence: Enhancing Selective Wave Soldering Technology Flux System Mastery German high-frequency pulse injection valve ensures precise flux application. Optional flux nozzle jam detection simplifies maintenance. Pressure tank and precision pressure flow meter ensure consistent flux control. Preheat System Excellence Bottom IR preheating system ensures stability and efficiency. Maintenance is simplified with a tool-free mode and plug-in design. Soldering System Innovation Swedish "PRECIMETER" electromagnetic pump coil ensures stability. Stainless steel soldering pot prevents tin liquid leakage. N2 online heating system reduces solder dross. Transmission System Mastery Specially designed material profiles ensure operational stability. Thickened customized rails guarantee flawless operation. Control and Intelligence Keyence PLC+module high-end bus control system ensures stability. Industry 4.0 compliance allows guided programming and real-time data visualization. Market Promotion and Success Stories: Elevating Selective Wave Soldering Machine I.C.T's strategic market positioning has led to global success across diverse industries. Success stories from European clients highlight reliability and trust in the machine. Over 70 units sold across 20+ countries since 2022, establishing its industry-leading position. Conclusion Conclusion: I.C.T's Selective Wave Soldering Machine combines technical excellence with global market success, solidifying its leadership in precision soldering technology.
Technical Library | 2012-12-12 03:17:51.0
When we designed the PCB equipments, we should try to simplify crcuit and structure design that on the premise of ensuring the equipments to meet the technology and performance, In modern society, modules design (MD)is a effective measures to improved the pcb equipment reliability. The system were made up simpleness functions of modules to reducing the complexity of the design. Both domestic and abroad, a large number of facts have proved this point, MD was a best choice for PCB equipment design.
Technical Library | 2021-10-12 18:08:28.0
Counterfeit components have been defined as a growing concern in recent years as demand increases for reducing costs. In fact the Department of Commerce has identified a 141% increase in the last three years alone. A counterfeit is any item that is not as it is represented with the intention to deceive its buyer or user. The misrepresentation is often driven by the known presence of defects or other inadequacies in regards to performance. Whether it is used for a commercial, medical or military application, a counterfeit component could cause catastrophic failure at a critical moment.
Technical Library | 2019-05-08 00:04:49.0
It is necessary to know there are some faults that cannot be entirely avoided during the use of temperature and humidity test chamber, but how to deal with them in time is a problem that needs to be paid attention to.Here mainly explain the temperature and humidity test chamber compressor in the reason for the water, and how to deal with it. Reason: water comes from air, because there is always water in the air, known as humidity, which is compressed into supersaturated air and then analyzed to become liquid. The oil comes from the lubrication system of the compressor, possibly because the wear clearance of the mechanism increases, and the lubricating oil will escape into the cylinder. Solution: after the compressor is removed from the temperature and humidity test chamber, with a larger gas storage tank, the oil and water will naturally settle down to the bottom of the jar, and we need to discharge regularly to reduce the oil and water content in the compressed air. Of course, you can also use filters and other things to further reduce the content of oil and water. if you need to know more details about climatic chamber, keep an eye on our website www.climatechambers.com
Technical Library | 2019-09-04 21:35:53.0
Since the European Directives, RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization and Restriction of Chemicals), entered into force in 2006-7, the number of regulated substances continues to grow. REACH adds new substances roughly twice a year, and more substances will be added to RoHS in 2019. While these open-ended regulations represent an ongoing burden for supply chain reporting, some ability to remain ahead of new substance restrictions can be achieved through full material declarations (FMD) specifically the IPC-1752A Class D Standard (the "Standard"), which was developed by the IPC - Association Connecting Electronic Industries. What is important to the supply chain is access to user-friendly, easily accessible or free, fully supported tools that allow suppliers to create and modify XML (Extensible Markup Language) files as specified in the Standard. Some tools will provide enhancements that validate required data entry and provide real-time interactive messages to facilitate the resolution of errors. In addition, validation and auto-population of substance CAS (Chemical Abstract Service) numbers, and Class D weight rollup validation ensure greater success in the acceptance of the declarations in customer systems that automate data gathering and reporting. A good tool should support importing existing IPC-1752A files for editing; this capability reduces the effort to update older declarations and greatly benefits suppliers of a family of products with similar composition. One of the problems with FMDs is the use of "wildcard" non-CAS numbers based on a declarable substance list (DSL). While the substances in different company's lists tend to have some overlap, no two DSL’s are the same. We provide an understanding of the commonality and differences between representative DSLs, and the ability to configure how much of a non-DSL substance percent is allowed. Case studies are discussed to show how supplier compliance data, can be automatically loaded into the customer's enterprise compliance system. Finally, we briefly discuss future enhancements and other developments like Once an Article, Always an Article (O5A) that will continue to require IPC standards and supporting tools to evolve.
Technical Library | 2019-11-12 02:09:22.0
Thermal shock test chamber can be used for testing the chemical change or physical damage on composite materials caused by the thermal expansion and contraction of the sample in the shortest time,which is subjected to extremely and continuous high and low temperature environment.so how to check the temperature recovery time of this chamber? Normally we take following steps to inspect the temepratuire recovering time: 1.Install the temperature sensor at the specified position, and adjust the temperature controller of hot zone and cold zone to the required nominal temperature respectively. 2.The temperature increases and reduces respectively,30min after temperature in two zones reach stable status,record temperature value of the measuring point,pls set the temperature value of two zones to be required nominal temperature. 3.The temperature shock test chamber automatically places the inspected load into theh ot zone,select the corresponding retention time according to regulated standard. 4.Set the transfer time,then the inspection load is transferred from hot zone to cold zone, and the temperature of the measuring point is observed and recorded, and then the reverse conversion of the load from cold zone to hot zone is carried out according to the same method, and the temperature of the measuring point is observed and recorded. www.climatechambers.com
Technical Library | 2019-08-07 22:56:45.0
The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.
1 |