Technical Library: in circuit test (Page 3 of 17)

Process Control of Ionic Contamination Achieving 6-Sigma Criteria in The Assembly of Electronic Circuits

Technical Library | 2018-11-29 13:43:54.0

Ionic contamination testing as a process control tool a newly developed testing protocol based on IPC-TM 650 2.3.25, was established to enable monitoring of ionic contamination within series production. The testing procedure was successfully implemented within the production of high reliability, safety critical electronic circuits, involving multiple production sites around the world. I will be shown in this paper that the test protocol is capable for meeting Six-Sigma-Criteria.

Robert Bosch LLC Automotive Electronics Division

Characterization of No Clean Solderpaste Residues: The Relationship to In-Circuit Testing

Technical Library | 1999-05-07 11:24:21.0

Many manufacturers have now completed the conversion to no clean solder paste. Many factors governed this initial conversion, among those being cosmetics, solder ability, and process ability. In circuit testing or probing through no clean solder paste residues has topically not been a major factor in the conversion decision for several reasons. Due to board design, solder paste was only used on one side of the board and not subjected to testing...

Kester

Testing Printed Circuit Boards for Creep Corrosion in Flowers of Sulfur Chamber

Technical Library | 2015-07-16 17:24:23.0

Qualification of electronic hardware from a corrosion resistance standpoint has traditionally relied on stressing the hardware in a variety of environments. Before the development of tests based on mixed flowing gas (MFG), hardware was typically exposed to temperature-humidity cycling. In the pre-1980s era, component feature sizes were relatively large. Corrosion, while it did occur, did not in general degrade reliability. There were rare instances of the data center environments releasing corrosive gases and corroding hardware. One that got a lot of publicity was the corrosion by sulfur-bearing gases given off by data center carpeting. More often, corrosion was due to corrosive flux residues left on as-manufactured printed circuit boards (PCBs) that led to ion migration induced electrical shorting. Ion migration induced failures also occurred inside the PCBs due to poor laminate quality and moisture trapped in the laminate layers.

iNEMI (International Electronics Manufacturing Initiative)

Principles of Analog In-Circuit Testing

Technical Library | 2012-12-26 14:18:24.0

Passive components including resistors, capacitors, inductors, and circuit-protection devices compose the highest percentage of all devices that are populated on today’s PCB assemblies. However, the successful isolation and testing of these components during ICT is perhaps the most challenging and the least understood of all modern-day validation practices.

Teradyne

Good Product Quality Comes From Good Design for Test Strategies

Technical Library | 2015-12-17 17:24:17.0

Product quality can be improved through proper application of design for test (DFT) strategies. With today's shrinking product sizes and increasing functionality, it is difficult to get good test coverage of loaded printed circuit boards due to the loss of test access. Advances in test techniques, such as boundary scan, help to recover this loss of test coverage. However, many of these test techniques need to be designed into the product to be effective.This paper will discuss how to maximize the benefits of boundary scan test, including specific examples of how designers should select the right component, connect multiple boundary scan components in chains, add test access to the boundary scan TAP ports, etc. A discussion of DFT guidelines for PCB layout designers is also included. Finally, this paper will include a description of some advanced test methods used in in-circuit tests, such as vectorless test and special probing methods, which are implemented to improve test coverage on printed circuit boards with limited test access.

Agilent Technologies, Inc.

Review of Interconnect Stress Testing Protocols and Their Effectiveness in Screening Microvias

Technical Library | 2016-11-30 15:53:15.0

The use of microvias in Printed Circuit Boards (PCBs) for military hardware is increasing as technology drives us toward smaller pitches and denser circuitry. Along with the changes in technology, the industry has changed and captive manufacturing lines are few and far between. As PCBs get more complicated, the testing we perform to verify the material was manufactured to our requirements before they are used in an assembly needs to be reviewed to ensure that it is sufficient for the technology and meets industry needs to better screen for long-term reliability. The Interconnect Stress Testing (IST) protocol currently used to identify manufacturing issues in plated through holes, blind, or buried vias are not necessarily sufficient to identify problems with microvias. There is a need to review the current IST protocol to determine if it is adequate for finding bad microvias or if there is a more reliable test that will screen out manufacturing inconsistencies. The objective of this research is to analyze a large population of PCB IST coupons to determine if there is a more effective IST test to find less reliable microvias in electrically passing PCB product and to screen for manufacturing deficiencies. The proposed IST test procedure will be supported with visual inspection of corresponding microvia cross sections and Printed Wiring Assembly (PWA) acceptance test results. The proposed screening will be shown to only slightly affect PCB yield while showing a large benefit to screening before PCBs are used in an assembly.

Raytheon

Issues and Challenges of Testing Modern Low Voltage Devices with Conventional In-Circuit Testers

Technical Library | 2012-12-14 14:25:37.0

The popularity of low voltage technologies has grown significantly over the last decade as semiconductor device manufacturers have moved to satisfy market demands for more powerful products, smaller packaging, and longer battery life. By shrinking the size of the features they etch into semiconductor dice, IC manufacturers achieve lower costs, while improving speed and building in more functionality. However, this move toward smaller features has lead to lower breakdown voltages and increased opportunities for component overstress and false failures during in-circuit test.

Teradyne

Novel Probing Concepts for Mass-Production Tests: Design and Challenges

Technical Library | 2012-06-15 00:43:47.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. The world of spring-loaded test probes and special probes for in-circuit and functional tests have grown tremendously over the past few years. Ever increasing demands for electro

INGUN Pruefmittelbau GmbH

Effect of Thermal Aging on Solderabilityof ENEPIG Surface Finish Used in Printed Circuit Boards

Technical Library | 2021-12-29 19:52:50.0

Medtronic seeks to quantify the thermal aging limits of electroless Ni-electroless Pd-immersion Au (ENEPIG) surface finishes to determine how aggressive the silicon burn-in process can be without loss of solderability. Silicon burn-in (power testing at elevated temperature) is used to eliminate early field failures, critical for device reliability. Thermal aging due to burn-in or annealing causes Ni and Pd diffusion to and oxidation on the surface. Surface oxides limit wetting of the PbSn solder, affecting electrical connectivity of components soldered afterburn-in. Isothermal aging of two ENEPIG surface finishes was performed at 75°C-150°C for 100 hrs-1500hrs to test the thermal aging limits and identify how loss of solderability occurs.

Purdue University

Contamination Profile of Printed Circuit Board Assemblies in Relation to Soldering Types and Conformal Coating

Technical Library | 2017-12-11 22:31:06.0

Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode setup. Localized extraction of residue was carried out using a commercial C3 extraction system. Results clearly show that the amount and distribution of flux residues are a function of the soldering process, and the level can be reduced by an appropriate cleaning. Selective soldering process generates significantly higher levels of residues compared to the wave and reflow process. For conformal coated PCBAs, the contamination levels generated from the tested wave and selective soldering process are found to be enough to generate blisters under exposure to high humidity levels.

Technical University of Denmark


in circuit test searches for Companies, Equipment, Machines, Suppliers & Information

Lewis & Clark
Lewis & Clark

Lewis and Clark is your #1 Pre-Owned Surface Mount and In-Circuit Test equipment supplier. We offer a variety of equipment solutions at a significant cost savings over new.

Manufacturer / Equipment Dealer / Broker / Auctions

18 Celina Ave., Unit 16
Nashua, NH USA

Phone: (603) 594-4229