Technical Library: index mark quad (Page 5 of 6)

IMPACT OF 0201 COMPONENTS ON CURRENT MANUFACTURING SYSTEMS

Technical Library | 2023-05-02 19:16:57.0

1.5 with a 150μm specification window. For 0201 components, the minimum requirement is CpK > 2.0 with a 100μm specification window. The spec window may need to be reduced down to 75μm if the controls for high volume manufacturing are insufficient. Also directly impacting the placement quality is the ability to apply sufficient solder consistently to the board. The goal is to maintain current printing practices, but the effect of powder size will be examined. This paper will evaluate the impact of placement accuracy and solder powder size on 0201 manufacturing quality.

Motorola Mobility LLC.

MOS Scaling: Transistor Challenges for the 21st Century

Technical Library | 1999-05-07 08:50:40.0

To enable transistor scaling into the 21st century, new solutions such as high dielectric constaConventional scaling of gate oxide thickness, source/drain extension (SDE), junction depths, and gate lengths have enabled MOS gate dimensions to be reduced from 10mm in the 1970’s to a present day size of 0.1mm. To enable transistor scaling into the 21st century, new solutions such as high dielectric constant materials for gate insulation and shallow, ultra low resistivity junctions need to be developed. In this paper, for the first time, key scaling limits are quantified for MOS transistorsnt materials for gate insulation and shallow, ultra low resistivity junctions need to be developed.

Intel Corporation

Resin Coated Copper Capacitive (RC3) Nanocomposites for System in a Package (SiP): Development of 3-8-3 structure

Technical Library | 2009-10-08 01:58:04.0

In the present study, we report novel ferroelectric-epoxy based polymer nanocomposites that have the potential to surpass conventional composites to produce thin film capacitors over large surface areas, having high capacitance density and low loss. Specifically, novel crack resistant and easy to handle Resin Coated Copper Capacitive (RC3) nanocomposites capable of providing bulk decoupling capacitance for a conventional power-power core, or for a three layer Voltage-Ground-Voltage type power core, is described.

i3 Electronics

Dissolution of Metal Foils in Common Beverages

Technical Library | 2016-07-07 15:37:18.0

How susceptible are the metals used in modern electronics manufacturing to corrosion by common beverages? This is a question of interest, especially to manufacturers, retailers and to a certain extent end customers. In this study the dissolution of aluminum, copper, gold, iron, lead, nickel, SAC305 solder, silver, tin and zinc was examined. Individual foils of these materials were fully immersed in one of sixteen chosen beverages and heated for 3 days at 40°C. The resulting solutions were analyzed using ICP-OES. The data were examined in light of the known pH, conductivity and ionic contents of the beverages, determined in previous work. Conclusions about the relative susceptibility to corrosion of the various metals and the corrosive power of the different beverages are made.

BlackBerry Limited

Making the Move from Machine Monitoring to SMART Manufacturing and the Implications on Profiling Systems

Technical Library | 2016-09-12 10:16:04.0

It is hard to open an Industry newsletter or visit an equipment manufacturer’s website without coming across a mention of the Internet of Things (IoT), Industry 4.0, SMART Manufacturing or ‘big data’. The accessibility to obtain data will only increase and this information and its real-time processing will become one of the most important resources for companies in the future. Production machinery will no longer simply processes the product, but the product will communicate with the machinery to tell it exactly what to do. Industry 4.0 has the vision to connects embedded system technologies and SMART production processes to drastically transform industry and production giving way to the SMART factory development. Future development in oven technology will allow machines to be controlled more intelligently and remotely resulting in the lowest cost model for manufacturing flow.

Solderstar

Copper Electroplating Technology for Microvia Filling

Technical Library | 2021-05-26 00:53:26.0

This paper describes a copper electroplating enabling technology for filling microvias. Driven by the need for faster, smaller and higher performance communication and electronic devices, build-up technology incorporating microvias has emerged as a viable multilayer printed circuit manufacturing technology. Increased wiring density, reduced line widths, smaller through-holes and microvias are all attributes of these High Density Interconnect (HDI) packages. Filling the microvias with conductive material allows the use of stacked vias and via in pad designs thereby facilitating additional packaging density. Other potential design attributes include thermal management enhancement and benefits for high frequency circuitry. Electrodeposited copper can be utilized for filling microvias and provides potential advantages over alternative via plugging techniques. The features, development, scale up and results of direct current (DC) and periodic pulse reverse (PPR) acid copper via filling processes, including chemistry and equipment, are described.

Rohm and Haas/Advanced Materials

Advanced Physical Inspection Methods for Counterfeit IC Detection

Technical Library | 2021-10-12 18:05:09.0

The remarkable increase in counterfeit parts (a factor of 4 since 2009) [1] is a huge reliability and security concern in various industries ranging from automotive electronics to sensitive military applications increasing the possibility of premature failure in critical systems [2-5]. Counterfeit parts can also incur a great financial loss to legitimate electronics companies [6]. The issue is even more alarming as the counterfeiters use more sophisticated methods making counterfeit detection a much harder task [7-8]. Therefore, it is reasonable to develop more advanced counterfeit detection methods targeting a more efficient detection of sophisticated counterfeited parts.

University of Connecticut

Microelectronics Reliability: Physics-of-Failure Based Modeling and Lifetime Evaluation

Technical Library | 2024-04-22 20:16:01.0

The solid-state electronics industry faces relentless pressure to improve performance, increase functionality, decrease costs, and reduce design and development time. As a result, device feature sizes are now in the nanometer scale range and design life cycles have decreased to fewer than five years. Until recently, semiconductor device lifetimes could be measured in decades, which was essentially infinite with respect to their required service lives. It was, therefore, not critical to quantify the device lifetimes exactly, or even to understand them completely. For avionics, medical, military, and even telecommunications applications, it was reasonable to assume that all devices would have constant and relatively low failure rates throughout the life of the system; this assumption was built into the design, as well as reliability and safety analysis processes.

NASA Office Of Safety And Mission Assurance

WHY CLEAN A NO-CLEAN FLUX

Technical Library | 2020-11-04 17:57:41.0

Residues present on circuit boards can cause leakage currents if not controlled and monitored. How "Clean is Clean" is neither easy nor cheap to determine. Most OEMs use analytical methods to assess the risk of harmful residues. The levels that can be associated with clean or dirty are typically determined based on the exposed environment where the part will be deployed. What is acceptably clean for one segment of the industry may be unacceptable for more demanding segments. As circuit assemblies increase in density, understanding cleanliness data becomes more challenging. The risk of premature failure or improper function is typically site specific. The problem is that most do not know how to measure or define cleanliness nor can they recognize process problems related to residues. A new site specific method has been designed to run performance qualifications on boards built with specific soldering materials, reflow settings and cleaning methods. High impedance measurements are performed on break off coupons designed with components geometries used to build the assembly. The test method provides a gauge of potential contamination sources coming from the assembly process that can contribute to electrochemical migration.

KYZEN Corporation

Simulation of Droplet Jetting of a Non-Newtonian Mixed Suspension

Technical Library | 2021-06-15 18:40:53.0

The jet printing of a dense mixed non-Newtonian suspension is based on the rapid displacement of fluid through a nozzle, the forming of a droplet and eventually the break-off of the filament. The ability to model this process would facilitate the development of future jetting devices. The purpose of this study is to propose a novel simulation framework and to show that it captures the main effects such as droplet shape, volume and speed. In the framework, the time dependent flow and the fluid-structure interaction between the suspension, the moving piston and the deflection of the jetting head is simulated. The system is modelled as a two phase system with the surrounding air being one phase and the dense suspension the other. Hence, the non-Newtonian suspension is modelled as a mixed single phase with properties determined from material testing. The simulations were performed with two coupled in-house solvers developed at Fraunhofer-Chalmers Centre; IBOFlow, a multiphase flow solver and LaStFEM, a large strain FEM solver. Jetting behaviour was shown to be affected not only by piston motion and fluid rheology, but also by the energy loss in the jetting head. The simulation results were compared to experimental data obtained from an industrial jetting head.

Fraunhofer-Chalmers Research Centre for Industustrial Mathematics


index mark quad searches for Companies, Equipment, Machines, Suppliers & Information

Online Equipment Auction of Altronic: Small-Batch Surface Mount & Assembly Facility

World's Best Reflow Oven Customizable for Unique Applications
Selective soldering solutions with Jade soldering machine

High Precision Fluid Dispensers
Selective soldering solutions with Jade soldering machine

High Throughput Reflow Oven