Technical Library: inspect after printing (Page 1 of 6)

THE EFFECT OF VACUUM REFLOW PROCESSING ON SOLDER JOINT VOIDING AND THERMAL FATIGUE RELIABILITY

Technical Library | 2023-01-17 17:19:44.0

A test program was developed to evaluate the effectiveness of vacuum reflow processing on solder joint voiding and subsequent thermal cycling performance. Area array package test vehicles were assembled using conventional reflow processing and a solder paste that generated substantial void content in the solder joints. Half of the population of test vehicles then were re-processed (reflowed) using vacuum reflow. Transmission x-ray inspection showed a significant reduction in solder voiding after vacuum processing. The solder attachment reliability of the conventional and vacuum reflowed test vehicles was characterized and compared using two different accelerated thermal cycling profiles. The thermal cycling results are discussed in terms of the general impact of voiding on solder thermal fatigue reliability, results from the open literature, and the evolving industry standards for solder voiding. Recommendations are made for further work based on other void reduction methods and additional reliability studies.

Heller Industries Inc.

SMT Printing Collapse Causes and Countermeasures --KINGSUN

Technical Library | 2023-12-15 03:06:24.0

The first process in the SMT industry is solder paste printing. After the solder paste printing is completed, electronic components are attached to PCB pads through a SMT machine, and then reflow soldered. A preliminary PCB board is roughly processed. SMT is a combination of multiple devices, and such a line is called an SMT production line. Our common PCBA is processed through this process. In SMT technology, each process is very important, and poor quality can be caused by different process defects. Today, we are discussing the causes and countermeasures of SMT printing collapse.

DONGGUAN KINGSUN AUTOMATION TECHNOLOGY CO.,LTD

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Decapsulation of Integrated Circuits

Technical Library | 2019-05-24 09:27:33.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

Decapsulation of Integrated Circuits

Technical Library | 2019-05-29 10:38:59.0

Decapsulation, or de-cap, is a failure analysis technique which involves the removal of material packaging from an integrated circuit (IC). After de-cap, visual inspection by optical microscopy of the internal circuitry may reveal areas where damage is most likely to have occurred. In addition, scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS) can identify the composition of any anomalies present after de-cap under higher magnification. The removal process of package material can be done either mechanically or chemically depending on the design of the integrated circuit. With ceramic packaging, de-cap is usually done mechanically by chiseling off the top with a fine razor and small hammer. For plastic packaging, de-cap requires chemical etching by strong acids. In this Tech Tips article, de-cap by chemical etching will be outlined step by step.

ACI Technologies, Inc.

How to Choose the Right PCB Coating Machine Line

Technical Library | 2023-11-07 09:36:38.0

How to Choose the Right PCB Coating Machine Line Selecting the ideal equipment for your PCB coating line can be a complex task. In this article, we will guide you through the critical components of a standard PCB coating machine line and their solutions to common challenges. We'll delve into the line's composition, including the elevator, transfer station, coating machine, inspection station, curing oven, and their interconnectedness through a return conveyor. Let's explore each element and understand its role. Components of a PCB Coating Machine Line: Elevator: The PCB coating process starts with an elevator, efficiently transporting PCB boards to the next stage. Transfer Station: After the elevator, boards are conveyed to a transfer station, preparing them for the coating process. Coating Machine: The heart of the PCB coating line is the coating machine. We offer a range of coating machines, including I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. Inspection Conveyor: Following the coating process, the boards move to an inspection station. The second transfer station is equipped with LED lights and a blue glass cover, enabling operators to closely inspect the coating quality. This feature is vital for ensuring consistent, dust-free coatings. Curing Oven: For UV-curable adhesives, we provide a UV curing oven to effectively solidify the adhesive. Return Conveyor: Beneath the entire line runs a return conveyor, connected to the elevator. This conveyor system efficiently returns PCBs from the last elevator to the first one, reducing manual handling and streamlining operations. The Advantages of the PCB Coating Line Design: 1. Easy Accessibility: The operator's station is strategically located beside the coating machine, ensuring easy access for setup and adjustments. 2. Enhanced Efficiency: The integrated return conveyor eliminates the need for manual transport, optimizing workflow. 3. Quality Control: The inspection station with the blue glass cover enables operators to inspect coatings for quality and cleanliness. 4. Dust Prevention: The blue glass cover also serves as a barrier to prevent dust contamination on freshly coated PCBs. Selecting the right PCB coating machine line is essential for achieving quality and efficiency in your operations. Our meticulously designed equipment line, along with its well-engineered components, can help you attain superior results. If you have further questions or need assistance in choosing the best solution for your specific requirements, please do not hesitate to contact us. We are committed to providing solutions that meet your needs and exceed your expectations.

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Stencil Printing 008004/0201 Aperture Components

Technical Library | 2020-04-14 15:56:32.0

This paper will focus on the application requirements of solder printing small aperture designs, concentrating on 008004 (inch) / 0201 (metric) size components, and the results of a design of experiment printing these challenging apertures. As Moore's law continues to be applied to component miniaturization, the next installment of reduced packaging has arrived in the form of the 008004/0201 for resistors and capacitors. Component size roughly the size of a grain of sand presents specific challenges to the solder printing process. To address these challenges, each aspect of the printing process will need be examined. This includes essential machine requirements, including correct squeegee blades, tooling support, and calibrations, to meet the demanding specifications. The correct match and design of materials will be addressed, focusing on the stencil and substrate design along with solder paste and cleaning solvent requirements. A design of experiment will be reviewed that applies the machine and materials discussed, including the printer and Solder Paste Inspection (SPI) setup and the specific machine parameters used. The results of these DOE's will then be closely examined.

ITW EAE

Identifying Flux Residues

Technical Library | 2019-05-23 10:42:00.0

Why identify flux residues? The primary purpose of flux is to reduce species of metal oxides from solderable surfaces, and to act as a mechanism for lifting and removing debris. If the assembly is not properly cleaned after manufacturing, flux may continue to reduce metals and may eventually corrode the assembly. When the assembly is powered, the metal ions may precipitate along electromagnetic field lines and form dendritic shorts. In addition, the presence of residue can alter the insulation properties of a board, affect the adhesion of the conformal coating, or interfere with the moving parts of the assembly. In radio frequency (RF) applications, flux may change the RF properties on the surface of the printed circuit board (PCB) such as the dielectric strength, surface resistance, and Q-resonance.

ACI Technologies, Inc.

Cleaning No-Clean Fluxes Prior to Conformal Coating

Technical Library | 2020-03-09 10:50:17.0

A customer called the Helpline seeking advice for cleaning no-clean fluxes prior to applying a conformal coating. The customer's assemblies were manufactured with a no-clean rosin based solder paste (ROL0) and were cleaned with an isopropyl alcohol (IPA) wash. After cleaning, a white residue was sometimes found in areas with high paste concentrations and was interfering with the adhesion of the conformal coating (Figure 1). For conformal coatings to adhere properly, the printed circuit board (PCB) surface must be clean of fluxes and other residues. In addition, ionic contamination left by flux residues can lead to corrosion and dendrite growth, two common causes of electronic opens and shorts. Other residues can lead to unwanted impedance and physical interference with moving parts.

ACI Technologies, Inc.

A Non-destructive Approach to Identify Intermittent Failure Locations on Printed Circuit Cards (PCC) that have been Temperature Cycle Tested

Technical Library | 2020-12-07 15:26:06.0

Temperature cycling testing is a method of accelerated life testing done to PCCs that are exposed to normal operation temperature variations over its lifetime. During the testing, intermittent "open" failures can first occur at the hot and cold extremes of the test, exposing weaknesses in the design and assembly. A poor/weak solder joint fatigues, a via trace or barrel cracks, loose connections or a component fails all causing an intermittent open. When not at extreme temperatures, the PCC assembly relaxes, the "open" closes creating electrical connectivity. If you are monitoring the PCC under test in-situ you will know that an intermittent failure has occurred, and the test could be stopped for inspection. If in-situ monitoring was not implemented, you would not know if there were intermittent failures or not. The PCC gets powered up and works fine at room temperature.

ACI Technologies, Inc.

  1 2 3 4 5 6 Next

inspect after printing searches for Companies, Equipment, Machines, Suppliers & Information

Voidless Reflow Soldering

Training online, at your facility, or at one of our worldwide training centers"
See Your 2024 IPC Certification Training Schedule for Eptac

High Throughput Reflow Oven
2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications
thru hole soldering and selective soldering needs

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
SMT spare parts

"Heller Korea"