Technical Library: lead contamination (Page 1 of 2)

Cleaning No-Clean Fluxes Prior to Conformal Coating

Technical Library | 2020-03-09 10:50:17.0

A customer called the Helpline seeking advice for cleaning no-clean fluxes prior to applying a conformal coating. The customer's assemblies were manufactured with a no-clean rosin based solder paste (ROL0) and were cleaned with an isopropyl alcohol (IPA) wash. After cleaning, a white residue was sometimes found in areas with high paste concentrations and was interfering with the adhesion of the conformal coating (Figure 1). For conformal coatings to adhere properly, the printed circuit board (PCB) surface must be clean of fluxes and other residues. In addition, ionic contamination left by flux residues can lead to corrosion and dendrite growth, two common causes of electronic opens and shorts. Other residues can lead to unwanted impedance and physical interference with moving parts.

ACI Technologies, Inc.

WHY test for Ionic Contamination?

Technical Library | 2023-04-17 21:37:32.0

Ionic contamination is a leading cause in the degradation and corrosion of electronic assemblies, leading to lifetime limitation and field failure (Fig. 1). Ionic residue comes from a variety of sources shown in Fig. 2 opposite: Examples of ionic contaminants: * Anions * Cations * Weak Organic Acid

Specialty Coating Systems

Validity of the IPC R.O.S.E. Method 2.3.25 Researched

Technical Library | 2010-06-10 21:01:48.0

This paper researches the effectiveness of the R.O.S.E. cleanliness testing process for dissolving and measuring ionic contaminants from boards soldered with no-clean and lead-free flux technologies.

KYZEN Corporation

Lead-Free and Mixed Assembly Solder Joint Reliability Trends

Technical Library | 2022-10-31 17:30:40.0

This paper presents a quantitative analysis of solder joint reliability data for lead-free Sn-Ag-Cu (SAC) and mixed assembly (SnPb + SAC) circuit boards based on an extensive, but non-exhaustive, collection of thermal cycling test results. The assembled database covers life test results under multiple test conditions and for a variety of components: conventional SMT (LCCCs, resistors), Ball Grid Arrays, Chip Scale Packages (CSPs), wafer-level CSPs, and flip-chip assemblies with and without underfill. First-order life correlations are developed for SAC assemblies under thermal cycling conditions. The results of this analysis are put in perspective with the correlation of life test results for SnPb control assemblies. Fatigue life correlations show different slopes for SAC versus SnPb assemblies, suggesting opposite reliability trends under low or high stress conditions. The paper also presents an analysis of the effect of Pb contamination and board finish on lead-free solder joint reliability. Last, test data are presented to compare the life of mixed solder assemblies to that of standard SnPb assemblies for a wide variety of area-array components. The trend analysis compares the life of area-array assemblies with: 1) SAC balls and SAC or SnPb paste; 2) SnPb balls assembled with SAC or SnPb paste.

EPSI Inc.

Characterization, Prevention and Removal of Particulate Matter on Printed Circuit Boards

Technical Library | 2016-12-22 16:44:04.0

Particulate matter contamination is known to become wet and therefore ionically conductive and corrosive if the humidity in the environment rises above the deliquescence relative humidity (DRH) of the particulate matter. In wet condition, particulate matter can electrically bridge closely spaced features on printed circuit boards (PCBs), leading to their electrical failure. (...) The objective of this paper is to develop and describe a practical, routine means of measuring the DRH of minute quantities of particulate matter (1 mg or less) found on PCBs.

IBM Corporation

Developments in Electroless Copper Processes to Improve Performance in amSAP Mobile Applications

Technical Library | 2020-09-02 22:02:13.0

With the adoption of Wafer Level Packages (WLP) in the latest generation mobile handsets, the Printed Circuit Board (PCB) industry has also seen the initial steps of High Density Interconnect (HDI) products migrating away from the current subtractive processes towards a more technically adept technique, based on an advanced modified Semi Additive Process (amSAP). This pattern plate process enables line and space features in the region of 20um to be produced, in combination with fully filled, laser formed microvias. However, in order to achieve these process demands, a step change in the performance of the chemical processes used for metallization of the microvia is essential. In the electroless Copper process, the critical activator step often risks cross contamination by the preceding chemistries. Such events can lead to uncontrolled buildup of Palladium rich residues on the panel surface, which can subsequently inhibit etching and lead to short circuits between the final traces. In addition, with more demands being placed on the microvia, the need for a high uniformity Copper layer has become paramount, unfortunately, as microvia shape is often far from ideal, the deposition or "throw" characteristics of the Copper bath itself are also of critical importance. This "high throwing power" is influential elsewhere in the amSAP technique, as it leads to a thinner surface Copper layer, which aids the etching process and enables the ultra-fine features being demanded by today's high end PCB applications. This paper discusses the performance of an electroless Copper plating process that has been developed to satisfy the needs of challenging amSAP applications. Through the use of a radical predip chemistry, the formation, build up and deposition of uncontrolled Pd residues arising from activator contamination has been virtually eradicated. With the adoption of a high throwing power Copper bath, sub 30um features are enabled and microvia coverage is shown to be greatly improved, even in complex via shapes which would otherwise suffer from uneven coverage and risk premature failure in service. Through a mixture of development and production data, this paper aims to highlight the benefits and robust performance of the new electroless Copper process for amSAP applications

Atotech

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

Electrostatic Theory of Metal Whiskers.

Technical Library | 2014-07-31 16:36:59.0

Metal whiskers often grow across leads of electric equipment and electronic package causing current leakage or short circuits and raising significant reliability issues. The nature of metal whiskers remains a mystery after several decades of research. Here, the existence of metal whiskers is attributed to the energy gain due to electrostatic polarization of metal filaments in the electric field. The field is induced by surface imperfections: contaminations, oxide states, grain boundaries, etc. A proposed theory provides closed form expressions and quantitative estimates for the whisker nucleation and growth rates, explains the range of whisker parameters and effects of external biasing, and predicts statistical distribution of their lengths.

University of Toledo

How to Manage Material Outgassing in Reflow Oven

Technical Library | 2020-11-24 23:12:27.0

In a lead-free reflow process, temperatures are higher, and materials use outgasses more than in a leaded reflow process. The trends toward higher density populated boards and more pin-in-paste technology also increase solder paste use. More components and more solder paste result in more outgassing of chemistry during the reflow process. Some assemblies report condensation of vapors when the cold printed circuit board enters the oven. Little is known about the interaction between these condensed materials in terms of the interaction between these condensed materials and the reliability of the assembly. Apart from the question of reliability, a printed circuit board contaminated with a small film of residues after reflow soldering is not desirable.

Vitronics Soltec

Characterize and Understand Functional Performance Of Cleaning QFN Packages on PCB Assemblies

Technical Library | 2022-12-19 18:59:51.0

Material and Process Characterization studies can be used to quantify the harmful effects that might arise from solder flux and other process residues left on external surfaces after soldering. Residues present on an electronic assembly can cause unwanted electrochemical reactions leading to intermittent performance and total failure. Components with terminations that extend underneath the package can trap flux residue. These bottom terminated components are flush with the bottom of the device and can have small solderable terminations located along the perimeter sides of the package. The clearance between power and ground render high electrical forces, which can propagate electrochemical interactions when exposed to atmospheric moisture (harsh environments). The purpose of this research is to predict and understand the functional performance of residues present under single row QFN component packages. The objective of the research study is to develop and collect a set of guidelines for understanding the relationship between ionic contamination and electrical performance of a BTC component when exposed to atmospheric moisture and the trade-offs between electrical, ionic contamination levels, and cleanliness. Utilizing the knowledge gained from undertaking the testing of QFN components and associated DOE, the team will establish a reference Test Suite and Test Spec for cleanliness.

iNEMI (International Electronics Manufacturing Initiative)

  1 2 Next

lead contamination searches for Companies, Equipment, Machines, Suppliers & Information