Technical Library: loss data (Page 1 of 1)

Signal Transmission Loss due to Copper Surface Roughness in High-Frequency Region

Technical Library | 2015-04-30 20:17:03.0

Higher-speed signal transmission is increasingly required on a printed circuit board to handle massive data in electronic systems. So, signal transmission loss of copper wiring on a printed circuit board has been studied. First, total signal loss was divided into dielectric loss and conductor loss quantitatively based on electromagnetic theory. In particular, the scattering loss due to surface roughness of copper foil has been examined in detail. And the usefulness of the copper foil with low surface roughness has been demonstrated.

Mitsui Kinzoku Group

Influence of Copper Conductor Surface Treatment for High Frequency PCB on Electrical Properties and Reliability

Technical Library | 2019-02-13 13:45:11.0

Development of information and telecommunications network is outstanding in recent years, and it is required for the related equipment such as communication base stations, servers and routers, to process huge amount of data in no time. As an electrical signal becomes faster and faster, how to prevent signal delay by transmission loss is a big issue for Printed Circuit Boards (PCB) loaded on such equipments. There are two main factors as the cause of transmission loss; dielectric loss and conductor loss. To decrease the dielectric loss, materials having low dielectric constant and low loss tangent have been developed. On the other hand, reducing the surface roughness of the copper foil itself to be used or minimizing the surface roughness by modifying surface treatment process of the conductor patterns before lamination is considered to be effective in order to decrease the conductor loss. However, there is a possibility that reduction in the surface roughness of the conductor patterns will lead to the decrease in adhesion of conductor patterns to dielectric resin and result in the deterioration of reliability of PCB itself. In this paper, we will show the evaluation results of adhesion performance and electrical properties using certain type of dielectric material for high frequency PCB, several types of copper foil and several surface treatment processes of the conductor patterns. Moreover, we will indicate a technique from the aspect of surface treatment process in order to ensure reliability and, at the same time, to prevent signal delay at the signal frequency over 20 GHz.

MEC Company Ltd.

Making Sense of Laminate Dielectric Properties

Technical Library | 2020-12-16 18:50:42.0

System operating speeds continue to increase as a function of the consumer demand for such technologies as faster Internet connectivity, video on demand, and mobile communications technology. As a result, new high performance PCB substrates have emerged to address signal integrity issues at higher operating frequencies. These are commonly called low Dk and/or low loss (Df) materials. The published "typical" values found on a product data sheet provide limited information, usually a single construction and resin content, and are derived from a wide range of test methods and test sample configurations. A printed circuit board designer or front end application engineer must be aware that making a design decision based on the limited information found on a product data sheet can lead to errors which can delay a product launch or increase the assembled PCB cost. The purpose of this paper is to highlight critical selection factors that go beyond a typical product data sheet and explain how these factors must be considered when selecting materials for high speed applications

Isola Group

Effects Of Surface Finish On High Frequency Signal Loss Using Various Substrate Materials

Technical Library | 2021-07-06 21:24:59.0

The amount of information transferred on wireless networks has increased dramatically with the tremendous growth of mobile phones, Internet access, and hand held devices. In order to build the infrastructure needed to handle ever increasing data transfer, manufacturers of electronic devices turn to high speed, high frequency electronic signals. The need to render these electronic devices portable is another technology driver. The merge of high-frequency signals with small geometry conductive traces means that the topic of signal loss has reached a critical point in existing device production.

MacDermid, Inc.

High Frequency DK and DF Test Methods Comparison High Density Packaging User Group (HDP) Project

Technical Library | 2016-03-24 17:37:09.0

Today's Electronic Industry is changing at a high pace. The root causes are manifold. So world population is growing up to eight billions and gives new challenges in terms of urbanization, mobility and connectivity. Consequently, there will raise up a lot of new business models for the electronic industry. Connectivity will take a large influence on our lives. Concepts like Industry 4.0, internet of things, M2M communication, smart homes or communication in or to cars are growing up. All these applications are based on the same demanding requirement – a high amount of data and increased data transfer rate. These arguments bring up large challenges to the Printed Circuit Board (PCB) design and manufacturing.This paper investigates the impact of different PCB manufacturing technologies and their relation to their high frequency behavior. In the course of the paper a brief overview of PCB manufacturing capabilities is be presented. Moreover, signal losses in terms of frequency, design, manufacturing processes, and substrate materials are investigated. The aim of this paper is, to develop a concept to use materials in combination with optimized PCB manufacturing processes, which allows a significant reduction of losses and increased signal quality.

Alcatel-Lucent

Understanding Circuit Material Performance Concerns for PCBs at Millimeter-Wave Frequencies

Technical Library | 2018-04-11 22:18:05.0

Millimeter-wave (mmWave) frequency applications are becoming more common. There are applications utilizing PCB technology at 60 GHz, 77 GHz and many other mmWave frequencies. When designing a PCB for mmWave frequency, the properties of the circuit materials need to be considered since they can be critical to the success of the application. Understanding the properties of circuit materials at these frequencies is very important.This paper will give an overview of which circuit material properties are important to mmWave frequency applications using PCBs. There will be data supplied which demonstrates why these properties are essential to the circuit material selection for mmWave applications. Some properties discussed will be dielectric constant (Dk) control, dissipation factor, moisture absorption, thickness control and TCDk (Temperature Coefficient of Dk). Measured comparisons will be shown for insertion loss and Dk versus frequency for different types of circuit materials up to 110 GHz. As part of the test data, the impact on circuit performance due to TCDk and moisture absorption will be shown at mmWave frequencies.

Rogers Corporation

RELIABLE NICKEL-FREE SURFACE FINISH SOLUTION FOR HIGHFREQUENCY-HDI PCB APPLICATIONS

Technical Library | 2020-08-05 18:49:32.0

The evolution of internet-enabled mobile devices has driven innovation in the manufacturing and design of technology capable of high-frequency electronic signal transfer. Among the primary factors affecting the integrity of high-frequency signals is the surface finish applied on PCB copper pads – a need commonly met through the electroless nickel immersion gold process, ENIG. However, there are well-documented limitations of ENIG due to the presence of nickel, the properties of which result in an overall reduced performance in high-frequency data transfer rate for ENIG-applied electronics, compared to bare copper. An innovation over traditional ENIG is a nickel-less approach involving a special nano-engineered barrier designed to coat copper contacts, finished with an outermost gold layer. In this paper, assemblies involving this nickel-less novel surface finish have been subjected to extended thermal exposure, then intermetallics analyses, contact/sheet resistance comparison after every reflow cycle (up to 6 reflow cycles) to assess the prevention of copper atoms diffusion into gold layer, solder ball pull and shear tests to evaluate the aging and long-term reliability of solder joints, and insertion loss testing to gauge whether this surface finish can be used for high-frequency, high density interconnect (HDI) applications.

LiloTree

Simulation of Droplet Jetting of a Non-Newtonian Mixed Suspension

Technical Library | 2021-06-15 18:40:53.0

The jet printing of a dense mixed non-Newtonian suspension is based on the rapid displacement of fluid through a nozzle, the forming of a droplet and eventually the break-off of the filament. The ability to model this process would facilitate the development of future jetting devices. The purpose of this study is to propose a novel simulation framework and to show that it captures the main effects such as droplet shape, volume and speed. In the framework, the time dependent flow and the fluid-structure interaction between the suspension, the moving piston and the deflection of the jetting head is simulated. The system is modelled as a two phase system with the surrounding air being one phase and the dense suspension the other. Hence, the non-Newtonian suspension is modelled as a mixed single phase with properties determined from material testing. The simulations were performed with two coupled in-house solvers developed at Fraunhofer-Chalmers Centre; IBOFlow, a multiphase flow solver and LaStFEM, a large strain FEM solver. Jetting behaviour was shown to be affected not only by piston motion and fluid rheology, but also by the energy loss in the jetting head. The simulation results were compared to experimental data obtained from an industrial jetting head.

Fraunhofer-Chalmers Research Centre for Industustrial Mathematics

  1  

loss data searches for Companies, Equipment, Machines, Suppliers & Information

pressure curing ovens

World's Best Reflow Oven Customizable for Unique Applications
Circuit Board, PCB Assembly & electronics manufacturing service provider

High Precision Fluid Dispensers
PCB Handling with CE

High Throughput Reflow Oven
Solder Paste Dispensing

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.


"回流焊炉"