Technical Library: mpm and 3d (Page 1 of 2)

2.5D and 3D Semiconductor Package Technology: Evolution and Innovation

Technical Library | 2017-09-14 01:21:52.0

The electronics industry is experiencing a renaissance in semiconductor package technology. A growing number of innovative 3D package assembly methodologies have evolved to enable the electronics industry to maximize their products functionality. By integrating multiple die elements within a single package outline, product boards can be made significantly smaller than their forerunners and the shorter interconnect resulting from this effort has contributed to improving both electrical performance and functional capability. (...) This paper outlines both positive and negative aspects of current 3D package innovations and addresses the challenges facing adopters of silicon and glass based interposer fabrication. The material presented will also reference 3D packaging standards and recognize innovative technologies from a number of industry sources, roadmaps and market forecasts.

Vern Solberg - Solberg Technical Consulting

Three-Dimensional MMIC and Its Evolution to WLCSP Technology

Technical Library | 2012-01-19 19:14:49.0

The history of multilayered, three-dimensional monolithic microwave integrated circuit (3-D MMIC) technology is described here. Although significant researches were carried out in the second half of 1990’s, still there were many twists and turns before an

Sumitomo Electric Industries, Ltd.

Modern 2D / 3D X-Ray Inspection - Emphasis on BGA, QFN, 3D Packages, and Counterfeit Components

Technical Library | 2010-09-16 18:45:06.0

With PCB complexity and density increasing and also wider use of 3D devices, tougher requirements are now imposed on device inspection both during original manufacture and at their subsequent processing onto printed circuit boards. More complicated and de

Nordson DAGE

Printed Electronics: Manufacturing Technologies and Applications

Technical Library | 2023-03-13 19:35:47.0

Translational Research in Additive Manufacturing at GTMI * Additive manufacturing/3D printing process and equipment development (e.g., metal, polymer and composites part manufacturing) * Computational modeling and simulation of additive manufacturing/printed electronics processes * Advanced materials development for additive manufacturing/printed electronics * Application development and demonstration of additive manufacturing/printed electronics

Georgia Institute of Technology

Additive Manufacturing for Next Generation Microwave Electronics and Antennas

Technical Library | 2020-08-13 00:59:03.0

The paper will discuss the integration of 3D printing and inkjet printing fabrication technologies for microwave and millimeter-wave applications. With the recent advancements in 3D and inkjet printing technology, achieving resolution down to 50 um, it is feasible to fabricate electronic components and antennas operating in the millimeter-wave regime. The nature of additive manufacturing allows designers to create custom components and devices for specialized applications and provides an excellent and inexpensive way of prototyping electronic designs. The combination of multiple printable materials enables the vertical integration of conductive, dielectric, and semi-conductive materials which are the fundamental components of passive and active circuit elements such as inductors, capacitors, diodes, and transistors. Also, the on-demand manner of printing can eliminate the use of subtractive fabrication processes, which are necessary for conventional microfabrication processes such as photolithography, and drastically reduce the cost and material waste of fabrication.

Georgia Institute of Technology

Electronic Does Not Equal Smart: Service Documentation and Brand Quality

Technical Library | 2018-02-01 00:31:48.0

This paper briefly summarizes the technologies underpinning the evolution in electrical system diagnosis and repair, which include schematic layout automation using prototypes and rule-based styling, instant language translation, 2D/3D view links with schematics, interactive diagnostic procedures, and dynamically-generated signal-tracing diagrams. These technologies empower after-sales service teams with state-of-the-art capabilities, which not only reduce costs but also improve brand quality in the eyes of its customers.

Mentor Graphics

3D Assembly Process a Look at Today and Tomorrow

Technical Library | 2016-04-21 14:10:55.0

The world of electronics continues to increase functional densities on products. One of the ways to increase density of a product is to utilize more of the 3 dimensional spaces available. Traditional printed circuit boards utilize the x/y plane and many miniaturization techniques apply to the x/y space savings, such as smaller components, finer pitches, and closer component to component distances.This paper will explore the evolution of 3D assembly techniques, starting from flexible circuit technology, cavity assembly, embedded technology, 3 dimensional surface mount assembly, etc.

Flex (Flextronics International)

Development of a Design & Manufacturing Environment for Reliable and Cost- Effective PCB Embedding Technology

Technical Library | 2011-10-06 13:59:04.0

The desire to have more functionality into increasingly smaller size end products has been pushing the PCB and IC Packaging industry towards High Density Interconnect (HDI) and 3D Packaging (stacked dies, embedded packaged components). Many companies in the high-end consumer electronics market place have been embedding passive chip components on inner PCB and IC Packages for a few years now. However, embedding packaged components on inner layers has remained elusive for the broader market due to lack of proper design tools and high cost of embedding components on inner layers (...) This paper will highlight several key industrialization aspects addressed in the frame of the European funded FP7 HERMES* project to build a manufacturing environment for products with embedded components. The program entered its third year and is now dealing with the manufacturing of functional demonstrators as an introduction to industrialization.

Cadence Design Systems, Inc.

Packaging Technology and Design Challenge for Fine Pitch Micro-Bump Cu-Pillar and BOT (Direct Bond on Substrate-Trace) Using TCNCP

Technical Library | 2015-12-02 18:32:50.0

(Thermal Compression with Non-Conductive Paste Underfill) Method.The companies writing this paper have jointly developed Copper (Cu) Pillar micro-bump and TCNCP(Thermal Compression with Non-Conductive Paste) technology over the last two+ years. The Cu Pillar micro-bump and TCNCP is one of the platform technologies, which is essentially required for 2.5D/3D chip stacking as well as cost effective SFF (small form factor) package enablement.Although the baseline packaging process methodology for a normal pad pitch (i.e. inline 50μm) within smaller chip size (i.e. 100 mm2) has been established and are in use for HVM production, there are several challenges to be addressed for further development for commercialization of finer bump pitch with larger die (i.e. ≤50μm tri-tier bond pad with the die larger than 400mm2).This paper will address the key challenges of each field, such as the Cu trace design on a substrate for robust micro-joint reliability, TCNCP technology, and substrate technology (i.e. structure, surface finish). Technical recommendations based on the lessons learned from a series of process experimentation will be provided, as well. Finally, this technology has been used for the successful launching of the company FPGA products with SFF packaging technology.

Altera Corporation

Fully automatic online shoe sole and upper spraying robot

Technical Library | 2019-05-23 21:56:56.0

Automatic on-line shoe sole spraying system: automatic shoe sole spraying system, simple and convenient operation, using 3D vision positioning system. Automatic recognition and automatic generation of spraying trajectory. Robot non-contact spraying gun is used to complete the process of shoe sole spraying with maturity, stability, high speed and high precision along the predetermined trajectory. The automatic generation of spraying trajectory is the realization of shoe sole spraying technology. Shoe sole spraying characteristics: 1.Positioning System: 3D Visual Positioning 2.Components: Intelligent Robot, Laser Scanner, Industrial Computer, Gum Spraying System, Conveyor Belt, Electrical Control System, etc. 3.Spraying time: slightly different according to shoe size and spraying time Fully automatic sole spraying advantages: 1. Simple application: suitable for soles of different specifications, models and sizes 2. Faster speed: 6-8 seconds to complete sole scanning and spraying, superior to similar products at home and abroad. 3. Quality stability: gum spraying trajectory is scheduled, gum dosage is fixed, gum spraying quality is greatly improved. 4. High cost performance: the same performance, the price is only 1/3 of the same type of equipment of European brand. 5. Reduce wear and tear: glue is fully utilized and not wasted, reducing human contact with glue. Intelligent operation advantage manual only need general operation can be automated workshop, mechanical arm automatic spraying glue, accurate spraying, reduce glue waste. Environmental protection effect of long-term close contact with glue seriously affects human health and mechanical work, glue does not directly contact, do not harm the human body. Fully automatic spraying, shoe sole adhesion process for automatic spraying machine, will not cause great challenges! With the deepening of personalized shoemaking, higher requirements have been put forward for the spraying technology in shoemaking process. The method of creating spraying trajectory must be adapted to shoes of different sizes and styles. The automatic generation of spraying trajectory is one of the key technologies to realize the automation of shoe sole spraying process. The method of off-line programming and real-time generation of spraying trajectory for robots based on the three-dimensional CAD model of sole and the data of sole. A new method of generating spray trajectory by scanning the sole of shoe upper with linear structured light sensor is presented. The feasibility of the method is verified by industrial robots. Aiming at the need of generating shoe sole spray rubber trajectory based on line structured light, the format standard of IGES file of three-dimensional model of shoe sole was tested. The shoe sole contour line and the shoe sole surface were extracted, and then the offset curve of the shoe sole contour line on the shoe sole surface was calculated to obtain the spray rubber trajectory. Three-dimensional profilometer is to use structured light to obtain sole information, effectively improve the automatic shoemaking spraying process, which will help to improve the efficiency of shoemaking, improve the quality of footwear products, and promote the development of personalized shoemaking.

YUSH Electronic Technology Co.,Ltd

  1 2 Next

mpm and 3d searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

Training online, at your facility, or at one of our worldwide training centers"
Baja Bid Auction JUL 9-10, 2024

High Resolution Fast Speed Industrial Cameras.
Online Equipment Auction of Altronic: Small-Batch Surface Mount & Assembly Facility

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
PCB separator

Training online, at your facility, or at one of our worldwide training centers"