Technical Library: odd shape placement (Page 1 of 1)

Odd Form Insertion Machines: The Perfect Solution for Unique Applications

Technical Library | 2023-09-16 03:55:52.0

Odd form insertion machines are the perfect solution for unique applications where standard machines cannot be used. They can insert a variety of odd-shaped components, such as rivets, washers, and studs.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

SMT Placement for ICs, Connectors and Odd-Shaped Components

Technical Library | 2009-11-18 23:37:52.0

Accurate component placement is a basic requirement for any pick and place machine. The first step towards accurate placement is accurate centering, or measurement of the component’s position on the placement head. One of the most widely used centering methods for ICs, connectors, and odd‐shaped components are a camera based system that measures the component position relative to a known point. Camera based centering systems include three main elements: lighting, camera, and software. Each of these elements are critical to obtaining an accurate measurement of the component and ultimately for accurate component placement on the PCB. As the old adage goes, the system is only as strong as its weakest link.

Juki Automation Systems

Pin in Paste Stencil Design for Notebook Mainboard

Technical Library | 2008-03-18 12:36:31.0

This paper examines the construction of a notebook mainboard with more than 2000 components and no wave soldering required. The board contains standard SMD, chipset BGAs, connectors, through hole components and odd forms placed using full automation and soldered after two reflow cycles under critical process parameters. However, state of the art technology does not help if the process parameters are not set carefully. Can all complex BGAs, THTs and even screws be soldered on a single stencil? What will help us overcome bridging, insufficient solder and thombstoning issues? This paper will demonstrate the placement of all odd shape components using pin-in-paste stencil design and full completion of the motherboard after two reflow cycles.

Vestel Electronic

Jetting Strategies for mBGAs a question of give and take...

Technical Library | 2015-04-02 20:12:58.0

The demands on volume delivery and positioning accuracy for solder paste deposits are increasing as the size and complexity of circuits continue to develop in the electronics industry. According to the iNEMI 2013 placement accuracy for these kinds of components will reach 6 sigma placement accuracy in X and Y of 30 um by 2023.This study attempts to understand the dependencies on piezo actuation pulse profile on jetting deposit quality, especially focused on positioning, satellites and shape. The correlation of deposit diameter and positioning deviation as a function of piezo actuation profile shows that positioning error for deposits increase almost monotonically with decreasing droplet volume irrespective of the piezo-actuation profile. The trends for shape and satellite levels are not as clear and demand further study.

Mycronic AB

Optimizing Flip Chip Substrate Layout for Assembly

Technical Library | 2007-11-29 17:20:31.0

Programs have been developed to predict the expected yield of flip chip assemblies, based on substrate design and the statistics of actual manufactured boards, as well as placement machine accuracy, variations in bump sizes, and possible substrate warpage. These predictions and the trends they reveal can be used to direct changes in design so that defect levels will fall below the acceptable limits. Shapes of joints are calculated analytically, or when this is not possible, numerically by means of a public domain program called Surface Evolver. The method is illustrated with an example involving the substrate for a flip chip BGA.

Universal Instruments Corporation

Board Design and Assembly Process Evaluation for 0201 Components on PCBs

Technical Library | 2023-05-02 19:06:43.0

As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.

Flextronics International

Beyond 0402M Placement: Process Considerations for 03015M Microchip Mounting

Technical Library | 2015-05-28 17:34:48.0

The printed circuit board assembly industry has long embraced the "Smaller, Lighter, Faster" mantra for electronic devices, especially in our ubiquitous mobile devices. As manufacturers increase smart phone functionality and capability, designers must adopt smaller components to facilitate high-density packaging. Measuring over 40% smaller than today's 0402M (0.4mmx0.2mm) microchip, the new 03015M (0.3mm×0.15mm) microchip epitomizes the bleeding-edge of surface mount component miniaturization. This presentation will explore board and component trends, and then delve into three critical areas for successful 03015M adoption: placement equipment, assembly materials, and process controls. Beyond machine requirements, the importance of taping specifications, component shape, solder fillet, spacing gap, and stencil design are explored. We will also examine how Adaptive Process Control can increase production yields and reduce defects by placing components to solder position rather than pad. Understanding the process considerations for 03015M component mounting today will help designers and manufacturers transition to successful placement tomorrow.

Panasonic Factory Solutions Company of America (PFSA)

RULES FOR WORKING WITH 0201s AND OTHER SMALL PARTS

Technical Library | 2023-05-02 18:50:24.0

Surface-mount PCB components are smaller than their lead-based counterparts and provide a radically higher component density. They are available in a variety of shapes and sizes designated by a series of standardized codes curated by the electronics industry. Of these PCB components, the 0201-sized are the smallest, measuring 0.024 x 0.012 in. (0.6 x 0.3 mm) – that's 70% smaller than the previous 0402 level! The 0201 components are designed to improve reliability in space-constrained applications such as portable electronics like smartphones, tablets, robotics and digital cameras, but require delicate handling during the assembly process. Given the miniaturized dimensions of an 0201 package, it is crucial that the mounting process abide by a series of guidelines regarding the design of the PCB mounting pads and solderable metallization, PCB circuit trace width, solder paste selection, package placement and overages, solder paste reflow, solder stencil screening, and final inspection. It's advisable that one review this information when procuring the services of a PCB assembler.

Advanced Assembly, LLC.

  1  

odd shape placement searches for Companies, Equipment, Machines, Suppliers & Information