Technical Library: osp and acronym (Page 1 of 1)

Effects of PCB Substrate Surface Finish and Flux on Solderability of Lead-Free SAC305 Alloy

Technical Library | 2021-10-20 18:21:06.0

The solderability of the SAC305 alloy in contact with printed circuit boards (PCB) having different surface finishes was examined using the wetting balance method. The study was performed at a temperature of 260 _C on three types of PCBs covered with (1) hot air solder leveling (HASL LF), (2) electroless nickel immersion gold (ENIG), and (3) organic surface protectant (OSP), organic finish, all on Cu substrates and two types of fluxes (EF2202 and RF800). The results showed that the PCB substrate surface finish has a strong effect on the value of both the wetting time t0 and the contact angle h. The shortest wetting time was noted for the OSP finish (t0 = 0.6 s with EF2202 flux and t0 = 0.98 s with RF800 flux), while the ENIG finish showed the longest wetting time (t0 = 1.36 s with EF2202 flux and t0 = 1.55 s with RF800 flux). The h values calculated from the wetting balance tests were as follows: the lowest h of 45_ was formed on HASL LF (EF2202 flux), the highest h of 63_ was noted on the OSP finish, while on the ENIG finish, it was 58_ (EF2202 flux). After the solderability tests, the interface characterization of cross-sectional samples was performed by means of scanning electron microscopy coupled with energy dispersive spectroscopy.

Foundry Research Institute

Creep Corrosion of PWB Final Finishes: Its Cause and Prevention

Technical Library | 2021-04-08 00:30:49.0

As the electronic industry moves to lead-free assembly and finer-pitch circuits, widely used printed wiring board (PWB) finish, SnPb HASL, has been replaced with lead-free and coplanar PWB finishes such as OSP, ImAg, ENIG, and ImSn. While SnPb HASL offers excellent corrosion protection of the underlying copper due to its thick coating and inherent corrosion resistance, the lead-free board finishes provide reduced corrosion protection to the underlying copper due to their very thin coating. For ImAg, the coating material itself can also corrode in more aggressive environments. This is an issue for products deployed in environments with high levels of sulfur containing pollutants encountered in the current global market. In those corrosive environments, creep corrosion has been observed and led to product failures in very short service life (1-5 years). Creep corrosion failures within one year of product deployment have also been reported. This has prompted an industry-wide effort to understand creep corrosion

Alcatel-Lucent

Study on the Reliability of Sn–Bi Composite Solder Pastes with Thermosetting Epoxy under Thermal Cycling and Humidity Treatment

Technical Library | 2021-08-25 16:28:36.0

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 #14;C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from

Nanjing University

  1  

osp and acronym searches for Companies, Equipment, Machines, Suppliers & Information