Technical Library: packaging electronic controls (Page 12 of 19)

The Perfect Copper Surface

Technical Library | 2015-11-12 19:04:51.0

In order to provide the functionality in today’s electronics, printed circuit boards are approaching the complexity of semiconductors. For flexible circuits with 1 mil lines and spaces, this means no nodules, no pits, and excellent ductility with thinner deposits. One of the areas that has to change to get to this plateau of technology is acid copper plating. Acid copper systems have changed in minor increments since their introduction decades ago. However, the basic cell design using soluble anodes in slabs or baskets has for the most part remained the same. Soluble, phosphorized, copper anodes introduce particulate and limits the ability to control plating distribution.

Technic Inc.

Using Metal Core Printed Circuit Board (MCPCB) as a Solution for Thermal Management

Technical Library | 2020-06-19 19:08:14.0

The designs of electronic devices and systems are being continuously improved by becoming smaller in size and faster in communication speed. The potential risk associated with these specific design improvements will be an increase in power density and, consequently, a greater risk of thermal problems and failures. At the same time, the prevailing use of circuit boards integrated with power devices such as motor controllers and drivers, light-emitting diode (LED) lighting modules, power supplies, and amplifiers, and regulators for TV, etc., drive to the use of a proper thermal management system while designing these kinds of printed circuit board (PCB).

Hong Kong Polytechnic University [The]

Printed Circuit Board Assembly & Choosing a Vendor

Technical Library | 2019-10-24 06:29:59.0

Making your novel electronic item design ready for mass fabrication and printed circuit board assembly consists of a lot of steps as well as risks. I will provide a few recommendations about how to neglect pricey errors and how to reduce the time to promote your novel item designs. You can hire printed circuit board assembly services for this. As soon as you have accomplished your product as well as printed circuit board design, you wish to get started developing prototypes prior to you commit to big fabrication volume. A lot of design software packages, for instance, PCB layout design software, as well as an industrial design software program, possess simulation potentials incorporated. Carrying out a simulation facilitates curtailing numerous design mistakes prior to the first prototype is developed. In case you are developing an intrusive item, you might desire to think about a modular design wherein all of the chief functionalities are situated in individual modules. All through your testing, you could then swap modules that don’t cater to the design limits. Spinning individual modules would be swifter and more cost-effective in comparison to spinning a complete design. Counting on the design intricacy, you can mull over manually mounting printed circuit board elements to bank dollars. Nonetheless, for medium to big intricacy this procedure likely to be very time taking, typically in case you wish to create numerous prototypes. Hence it makes sense thinking about a contract manufacturer for the assembly. Whilst running miniature quantity fabrication runs, the fabrication setup expenditure will usually control the by and large prototype constructs expenditure. Whilst seeking a subcontractor, it is finest to choose a vendor that focuses on prototype builds to reduce the cost. Prototype printed circuit board fabricators characteristically join the circuit boards of a number of clients which efficiently shares the setup expenditure in the midst of some customers. The disadvantage is that you would characteristically only be able to want among numerous standard printed circuit board material thicknesses as well as sizes. Apart from choosing a supplier with low setup expenditure, choosing a firm that would moreover be capable to manage your whole fabrication runs curtails mistakes because switching fabricators have the chance of errors owing to a specific supplier interpreting fabrication design data in a different way. This manner your design is already translated into the particular machine data that implies little or no setup expenditure for your final fabrication. A few PCB manufacturers also provide printed circuit board design services that are awesome plus if you do not possess experience with the design. Moreover, these vendors would be capable to help you in case there are issues with your design folders and be capable to detect issues prior to the fabrication.

Optima Technology Associates, Inc.

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

Room Temperature Fast Flow Reworkable Underfill For LGA

Technical Library | 2016-10-03 08:28:47.0

With the miniaturization of electronic device, Land Grid Array (LGA) or QFN has been widely used in consumer electronic products. However there is only 20-30 microns gap left between LGA and the substrate, it is very difficult for capillary underfill to flow into the large LGA component at room temperature. Insufficient underfilling will lead to the loss of quality control and the poor reliability issue. In order to resolve these issues, a room temperature fast flow reworkable underfill has been successfully developed with excellent flowability. The underfill can flow into 20 microns gap and complete the flow of 15mm distance for about 30 seconds at room temperature. The curing behavior, storage, thermal cycling performance and reworkability will be discussed in details in this paper.

YINCAE Advanced Materials, LLC.

Temperature Cycling and Fatigue in Electronics

Technical Library | 2020-01-01 17:06:52.0

The majority of electronic failures occur due to thermally induced stresses and strains caused by excessive differences in coefficients of thermal expansion (CTE) across materials.CTE mismatches occur in both 1st and 2nd level interconnects in electronics assemblies. 1st level interconnects connect the die to a substrate. This substrate can be underfilled so there are both global and local CTE mismatches to consider. 2nd level interconnects connect the substrate, or package, to the printed circuit board (PCB). This would be considered a "board level" CTE mismatch. Several stress and strain mitigation techniques exist including the use of conformal coating.

DfR Solutions

Effects of Tg and CTE on Semiconductor Encapsulants

Technical Library | 1999-07-21 08:49:49.0

As the role of direct-chip-attachment increases in the electronics industry, the reliability and performance of COB packaging materials becomes an increasing concern. Although many factors influence component reliability, the biggest determinants of performance are often the glass transition temperature (Tg) and the coefficient of thermal expansion (CTE) of the encapsulant or underfill. This paper discusses exactly what these properties are, how they are measured, and why they are important to device-reliability.

Henkel Electronic Materials

Imbedded Component/Die Technology (IC/DT®)

Technical Library | 2009-02-26 03:25:09.0

STI has developed a patented1 packaging technology coined Imbedded Component/Die Technology (IC/DT®) to integrate multiple subsystems within an electronics assembly into a single, advanced, high-density assembly. Imbedded Component/Die Technology (IC/DT®) enables the manufacturing and assembly of smaller, lighter, and more technologically advanced high density CCAs through imbedding unpackaged components in a 3-D laminate substrate with integrated thermal management

STI Electronics

Good Schematics Lead to GOOD LAYOUTS

Technical Library | 2015-04-08 11:10:47.0

An electronic schematic describes the electrical connectivity of a piece of equipment or an entire system. It is made up of symbols that represent individual components and contains electrical and mechanical information and their related connectivity, along with other important data. Information contained within the schematic is packaged into a printed circuit board (PCB) where the mechanical footprint is placed onto the board and connectivity information is graphically displayed. The more accurate the information contained in the schematic is and the clearer it is presented, the more it contributes to a robust printed circuit board.

Advanced Assembly, LLC.

The Long-term Shaping of the JTAG/Boundary-scan Standards

Technical Library | 2015-05-11 21:27:52.0

Originating from the last millenium, almost three decades ago, the introduction of surface mount packaging triggered a wave of changes throughout many aspects of electronics production. A small number of talented, innovative test engineers from various big players of the industry started to attend meetings to discuss the impact of that change of technology on their future test concepts for modern assemblies. The Joint Test Action Group was born.

JTAG Technologies B. V.


packaging electronic controls searches for Companies, Equipment, Machines, Suppliers & Information

Winsmart Electronic Co.,Ltd
Winsmart Electronic Co.,Ltd

Manufacturer of PCB depaneling and PCB soldering machines since 2005, products include CE approval V-groove PCB depanelizer, PCB router, PCB punching machine, laser depaneling, hot bar soldering machines and soldering robots.

Manufacturer

Liwu Industrial Park, Yuanzhou Town, Boluo
Huizhou, 30 China

Phone: +86-138-29839112

PCB Handling with CE

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
Baja Bid Auction JUL 9-10, 2024

Easily dispense fine pitch components with ±25µm positioning accuracy.
thru hole soldering and selective soldering needs

Have you found a solution to REDUCE DISPENSE REWORK? Your answer is here.
2024 Eptac IPC Certification Training Schedule

Software for SMT placement & AOI - Free Download.
PCB Depanelizers

Thermal Transfer Materials.