Technical Library: part (Page 14 of 16)

iNEMI Pb-Free Alloy Characterization Project Report: Part II - Thermal Fatigue Results For Two Common Temperature Cycles

Technical Library | 2021-09-08 14:10:12.0

The Pb-Free Alloy Characterization Program sponsored by International Electronics Manufacturing Initiative (iNEMI) is conducting an extensive investigation using accelerated temperature cycling (ATC) to evaluate ball grid array (BGA) thermal fatigue performance of 12 commercial or developmental Sn based Pb-free solder alloys. This paper presents the initial findings from a specific subset of the temperature cycling test matrix. The focus is on comparing alloy performance for two of the most commonly specified temperature cycles, 0 to 100 °C and -40 to 125 °C.

iNEMI (International Electronics Manufacturing Initiative)

RULES FOR WORKING WITH 0201s AND OTHER SMALL PARTS

Technical Library | 2023-05-02 18:50:24.0

Surface-mount PCB components are smaller than their lead-based counterparts and provide a radically higher component density. They are available in a variety of shapes and sizes designated by a series of standardized codes curated by the electronics industry. Of these PCB components, the 0201-sized are the smallest, measuring 0.024 x 0.012 in. (0.6 x 0.3 mm) – that's 70% smaller than the previous 0402 level! The 0201 components are designed to improve reliability in space-constrained applications such as portable electronics like smartphones, tablets, robotics and digital cameras, but require delicate handling during the assembly process. Given the miniaturized dimensions of an 0201 package, it is crucial that the mounting process abide by a series of guidelines regarding the design of the PCB mounting pads and solderable metallization, PCB circuit trace width, solder paste selection, package placement and overages, solder paste reflow, solder stencil screening, and final inspection. It's advisable that one review this information when procuring the services of a PCB assembler.

Advanced Assembly, LLC.

RULES FOR WORKING WITH 0201s AND OTHER SMALL PARTS

Technical Library | 2023-05-02 18:54:30.0

Surface-mount PCB components are smaller than their lead-based counterparts and provide a radically higher component density. They are available in a variety of shapes and sizes designated by a series of standardized codes curated by the electronics industry. Of these PCB components, the 0201-sized are the smallest, measuring 0.024 x 0.012 in. (0.6 x 0.3 mm) – that's 70% smaller than the previous 0402 level! The 0201 components are designed to improve reliability in space-constrained applications such as portable electronics like smartphones, tablets, robotics and digital cameras, but require delicate handling during the assembly process.

Advanced Assembly, LLC.

Evaluation of No-Clean Flux Residues Remaining After Secondary Process Operations

Technical Library | 2023-04-17 17:05:47.0

In an ideal world, manufacturing devices would work all of the time, however, every company receives customer returns for a variety of reasons. If these returned parts contributed to a fail, most companies will perform failure analysis (FA) on the returned parts to determine the root cause of the failure. Failure can occur for a multitude of reasons, for example: wear out, fatigue, design issues, manufacturing flaw or defect. This information is then used to improve the overall quality of the product and prevent reoccurrence. If no defect is found, it is possible that in fact the product has no defect. On the other hand, the defect could be elusive and the FA techniques insufficient to detect said deficiency. No-clean flux residues can cause intermittent or elusive, hard to find defects. In an attempt to understand the effects of no-clean flux residues from the secondary soldering and cleaning processes, a matrix of varying process and cleaning operation was investigated. Of special interest, traveling flux residues and entrapped residues were examined, as well as localized and batch cleaning processes. Various techniques were employed to test the remaining residues in order to assess their propensity to cause a latent failure. These techniques include Surface Insulation Resistance1 (SIR) testing at 40⁰C/90% RH, 5 VDC bias along with C32 testing and Ion Exchange Chromatography (IC). These techniques facilitate the assessment of the capillary effect the tight spacing these component structures have when flux residues are present. It is expected that dendritic shorting and measurable current leakage will occur, indicating a failing SIR test. However, since the residue resides under the discrete components, there will be no visual evidence of dendritic growth or metal migration.

Foresite Inc.

A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards

Technical Library | 2024-04-29 21:39:52.0

In this paper, we develop and put into practice an Automatic Optical Inspection (AOI) system based on machine vision to check the holes on a printed circuit board (PCB). We incorporate the hardware and software. For the hardware part, we combine a PC, the three-axis positioning system, a lighting device and CCD cameras. For the software part, we utilize image registration, image segmentation, drill numbering, drill contrast, and defect displays to achieve this system. Results indicated that an accuracy of 5µm could be achieved in errors of the PCB holes allowing comparisons to be made. This is significant in inspecting the missing, the multi-hole and the incorrect location of the holes. However, previous work only focusses on one or other feature of the holes. Our research is able to assess multiple features: missing holes, incorrectly located holes and excessive holes. Equally, our results could be displayed as a bar chart and target plot. This has not been achieved before. These displays help users analyze the causes of errors and immediately correct the problems. Additionally, this AOI system is valuable for checking a large number of holes and finding out the defective ones on a PCB. Meanwhile, we apply a 0.1mm image resolution which is better than others used in industry. We set a detecting standard based on 2mm diameter of circles to diagnose the quality of the holes within 10 seconds.

National Cheng Kung University

Understanding Circuit Material Performance Concerns for PCBs at Millimeter-Wave Frequencies

Technical Library | 2018-04-11 22:18:05.0

Millimeter-wave (mmWave) frequency applications are becoming more common. There are applications utilizing PCB technology at 60 GHz, 77 GHz and many other mmWave frequencies. When designing a PCB for mmWave frequency, the properties of the circuit materials need to be considered since they can be critical to the success of the application. Understanding the properties of circuit materials at these frequencies is very important.This paper will give an overview of which circuit material properties are important to mmWave frequency applications using PCBs. There will be data supplied which demonstrates why these properties are essential to the circuit material selection for mmWave applications. Some properties discussed will be dielectric constant (Dk) control, dissipation factor, moisture absorption, thickness control and TCDk (Temperature Coefficient of Dk). Measured comparisons will be shown for insertion loss and Dk versus frequency for different types of circuit materials up to 110 GHz. As part of the test data, the impact on circuit performance due to TCDk and moisture absorption will be shown at mmWave frequencies.

Rogers Corporation

Selective soldering in an optimized nitrogen atmosphere

Technical Library | 2023-11-14 19:24:08.0

In PCB circuit assemblies the trend is moving to more SMD components with finer pitch connections. The majority of the assemblies still have a small amount of through hole (THT) components. Some of them can't withstand high reflow temperatures, while others are there because of their mechanical robustness. In automotive applications these THT components are also present. Many products for cars, including steering units, radio and navigation, and air compressors also use THT technology to connect board-to-board, PCB's to metal shields or housings out of plastic or even aluminium. This is not a simple 2D plain soldering technology, as it requires handling, efficient thermal heating and handling of heavy (up to 10 kg) parts. Soldering technology becomes more 3D where connections have to be made on different levels. For this technology robots using solder wire fail because of the spattering of the flux in the wires and the long cycle time. In wave soldering using pallets the wave height is limited and pin in paste reflow is only a 2D application with space limitations.

Vitronics Soltec

Where PCBs and Printed Electronics Meet

Technical Library | 2016-07-14 18:21:29.0

Printed Circuit Boards (PCBs) and Printed Electronics (PE) both describe conductor/substrate combinations that make connections. Both PCB and PE technologies have been in use for a long time in one form or another with PCBs currently the standard for complex, high speed electronics and PE for user interface, complex form factor or other film based applications. New and innovative applications create the opportunity for promising structures. Taking advantage of the PCB shop's capability as well as the material set can help create these structures and indeed PE materials can find use in more traditional PCBs. New materials and new uses of existing materials open up many possibilities in electronic interconnecting structures. PCB manufacturers have a complex manufacturing infrastructure, well suited for both additive and subtractive conductor processing. While built around rigid material processing (flex PCB being the exception), there are opportunities for PE substrate processing. As electronics devices are applied to more and more parts of our lives, we need to continually push for better solutions. Fit, function, manufacturability, and cost are all important considerations. Crossing the PCB/PE boundary is a way to meet the challenge.

INSULECTRO

Corrosion Resistant Servers for Free-Air Cooling Data Centers

Technical Library | 2016-11-10 17:37:35.0

The demand for compute capability is growing rapidly fueling the ever rising consumption of power by data centers the worldwide. This growth in power consumption presents a challenge to data center total cost of ownership. Free-air cooling is one of the industrial trends in reducing power consumption, the power usage effectiveness (PUE) ratio, and the total cost of ownership (TCO). Free-air cooling is a viable approach in many parts of the world where the air is reasonably clean. In Eastern China, the poor quality of air, high in particle and gaseous contamination, is a major obstacle to free-air cooling. Servers exposed to outside air blowing in to data centers will corrode and fail at high rate. The poor reliability of hardware increase TCO dramatically. This paper describes a corrosion resistant server design suitable for reliable operation in a free-air cooling data center located in Eastern China where the indoor air quality can be as poor as ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) severity level G3. An accelerated corrosion test method of verifying hardware reliability in the ASHRAE severity level G3 environment is also described.

IBM Corporation

IPC-1782 Standard for Traceability Supporting Counterfeit Components

Technical Library | 2018-01-04 11:05:34.0

Traceability has grown from being a specialized need for certain safety critical segments of the industry, to now being a recognized value-add tool for the industry as a whole. The perception of traceability data collection however persists as being a burden that may provide value only when the most rare and disastrous of events take place. Disparate standards have evolved in the industry, mainly dictated by large OEM companies in the market create confusion, as a multitude of requirements and definitions proliferate. The intent of the IPC-1782 project is to bring the whole principle and perception of traceability up to date. Traceability, as defined in this standard will represent the most effective quality tool available, becoming an intrinsic part of best practice operations, with the encouragement of automated data collection from existing manufacturing systems, integrating quality, reliability, predictive (routine, preventative, and corrective) maintenance, throughput, manufacturing, engineering and supply-chain data, reducing cost of ownership as well as ensuring timeliness and accuracy all the way from a finished product back through to the initial materials and granular attributes about the processes along the way.

Mentor Graphics


part searches for Companies, Equipment, Machines, Suppliers & Information